Skip to main content Accessibility help
×
Home

Structural modelling studies and immunoprophylactic potential of Brugia malayi DEAD Box RNA helicase

  • MEGHNA SINGH (a1), NIDHI SHRIVASTAVA (a1), UZMA SAQIB (a2), MOHAMMAD IMRAN SIDDIQI (a2) and SHAILJA MISRA-BHATTACHARYA (a1)...

Summary

DEAD Box RNA helicases are essential enzymes that are involved in RNA metabolic processes such as transcription, pre-mRNA splicing, translation initiation and RNA decay. We have previously over-expressed and biochemically characterized an immunodominant cDNA clone encoding DEAD box RNA helicase (BmL3-Helicase) isolated by immunoscreening of the larval stage cDNA library of Brugia malayi. In the current study, the 3D structure was determined and the immunoprophylactic efficacy of BmL3-Helicase was investigated by immunizing Mastomys coucha with the recombinant protein and subsequently challenging with B. malayi infective larvae. The immunization had an adverse outcome on the establishment of challenged larvae resulting in a 67·4% reduction in adult parasite recovery, a 86·7% decrease in the microfilarial density and profound sterility of the recovered female worms. The immune response thus generated was investigated by measuring the levels of specific antibodies including IgG subclasses, reactive oxygen species and cytokines.

Copyright

Corresponding author

*Corresponding author: Division of Parasitology, Central Drug Research Institute, Lucknow-226021, UP, India. Tel: +91 522 2612411 18. PABX 4221/4224. Fax: +91 522 2623405/2623938/2629504. E-mail: shailja_cdri@rediffmail.com, shailjacdri@yahoo.com

References

Hide All
Altschul, S. F., Thomas, L. M., Alejandro, A. S., Jinghui, Z., Zheng, Z., Webb, M. and David, J. L. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.
Chandrashekar, R., Rao, U. R., Parab, Ρ. Β. and Subrahmanyam, D. (1985). Brugia malayi: serum-dependent cell-mediated reactions to microfilariae. Southeast Asian Journal of Tropical Medicine and Public Health 16, 1521.
Devaney, E. and Osborne, J. (2000). The third-stage larva (L3) of Brugia: its role in immune modulation and protective immunity. Microbes and Infection 2, 13631371.
Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., Allen, J. E., Delcher, A. L., Guiliano, D. B., Miranda-Saavedra, D., Angiuoli, S. V., Creasy, T. et al. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science 317, 17561760.
Gregory, W. F., Atmadja, A. K., Allen, J. E. and Maizels, R. M. (2000). The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infection and Immunity 68, 41744179.
Kolaskar, A. S. and Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters 276, 172174.
Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283291.
Pause, A., Méthot, N. and Sonenberg, N. (1993). The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation factor 4A is required for RNA binding and ATP hydrolysis. Molecular and Cellular Biology 13, 67896798.
Rajan, T. V., Porte, P., Yates, J. A., Keefer, L. and Shultz, L. D. (1996). Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infection and Immunity 64, 33513353.
Sali, A. and Blundell, T. L. (1993). Comparative protein modeling by satisfaction of spatial restraints. Journal of Molecular Biology 234, 779815.
Singh, H. and Raghava, G. P. S. (2001). ProPred: prediction of HLA-DR binding sites. Bioinformatics 17, 12361237.
Singh, M., Shakya, S., Soni, V. K., Dangi, A., Kumar, N. and Bhattacharya, S. M. (2009 a). The n-Hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice. International Immunopharmacology 9, 716728.
Singh, M., Srivastava, K. K. and Bhattacharya, S. M. (2009 b). Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitological Research 104, 753761.
Singh, U., Misra, S., Muthy, P. K., Katiyar, J. C., Agrawal, A. and Sircar, A. R. (1997). Immunoreactive molecules of Brugia malayi and their diagnostic potential. Serodiagnosis and Immunotherapy in Infectious Disease 8, 207212.
Taylor, M. J., Hoerauf, A. and Bockarie, M. (2010). Lymphatic filariasis and onchocerciasis. Lancet 376, 11751185.
Thomas, G. R., Crossan, M. C. and Selkirk, M. E. (1997). Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi. Infection and Immunity 65, 27322739.
Vedi, S., Dangi, A., Hajela, K. and Misra-Bhattacharya, S. (2008). Vaccination with 73 kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine 26, 59976005.

Keywords

Structural modelling studies and immunoprophylactic potential of Brugia malayi DEAD Box RNA helicase

  • MEGHNA SINGH (a1), NIDHI SHRIVASTAVA (a1), UZMA SAQIB (a2), MOHAMMAD IMRAN SIDDIQI (a2) and SHAILJA MISRA-BHATTACHARYA (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed