Skip to main content Accessibility help

The role of Intelectin-2 in resistance to Ascaris suum lung larval burdens in susceptible and resistant mouse strains



The underlying mechanism of predisposition to Ascaris infection is not yet understood but host genetics are thought to play a fundamental role. We investigated the association between the Intelectin-2 gene and resistance in F2 mice derived from mouse strains known to be susceptible and resistant to infection. Ascaris larvae were isolated from murine lungs and the number of copies of the Intelectin-2 gene was determined in F2 mice. Intelectin-2 gene copy number was not significantly linked to larval burden. In a pilot experiment, the response to infection in parental mice of both sexes was observed in order to address the suitablity of female F2 mice. No overall significant sex effect was detected. However, a divergence in resistance/susceptibility status was observed between male and, female hybrid offspring. The responsiveness to Ascaris in mice is likely to be controlled by multiple genes and, despite a unique absence from the susceptible C57BL/6j strain, the Intelectin-2 gene does not play a significant role in resistance. The observed intra-strain variation in larval burden requires further investigation but we hypothesize that it stems from social/dominance hierarchies created by the presence of female mice and possibly subsequent hormonal perturbations that modify the intensity of the immune response.


Corresponding author

*Corresponding author: Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland. Tel: +353 1 896 2194. Fax: +353 1 677 8094. E-mail:


Hide All
Acevedo, N., Mercado, D., Vergara, C., Sanchez, J., Kennedy, M. W., Jiménez, S., Fernández, A. M., Gutierrez, M., Puerta, L. and Caraballo, L. (2009). Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clinical and Experimental Immunology 157, 282290.
Ahmed, S. A., Dauphinee, M. J. and Talal, N. (1985). Effects of short-term administration of sex hormones on normal and autoimmune mice. The Journal of Immunology 134, 204210.
Alexander, J. and Stimson, W. H. (1988). Sex hormones and the course of parasitic infection. Parasitology Today 4, 189193.
Artis, D. (2006). New weapons in the war on worms: identification of putative mechanisms of immune-mediated expulsion of gastrointestinal nematodes. International Journal for Parasitology 36, 723733.
Barnard, C., Gilbert, F. and McGregor, P. (2007). Asking Questions in Biology. Prentice Hall, London, UK.
Barnard, C. J., Behnke, J. M. and Sewell, J. (1994). Social behaviour and susceptibility to infection in house mice (Mus musculus): effects of group size, aggressive behaviour and status-related hormonal responses prior to infection on resistance to Babesia microti. Parasitology 108, 487496.
Barnard, C. J., Behnke, J. M., Gage, A. R., Brown, H. and Smithurst, P. R. (1997). Modulation of behaviour and testosterone concentration in immunodepressed male laboratory mice (Mus musculus). Physiology & Behaviour 61, 907917.
Boes, J., Medley, G. F., Eriksen, L., Roepstorff, A. and Nansen, P. (1998). Distribution of Ascaris suum in experimentally and naturally infected pigs and comparison with Ascaris lumbricoides infections in humans. Parasitology 117, 589596.
Bohus, B. and Koolhaas, J. M. (1991). Psychoimmunology of social factors in rodents and other subprimate vertebrates. In Psychoneuroimmunology, (ed. Adler, R., Felten, D. L. and Cohen, N.), pp. 807826. Academic Press, San Diego/New York/Boston, USA.
Bone, L. W. and Bottjer, K. P. (1986). Nippostrongylus brasiliensis: effect of host hormones on helminth ingestion in vivo. International Journal for Parasitology 16, 7780.
Chan, L., Kan, S. P. and Bundy, D. A. P. (1992). The effect of repeated chemotherapy on age-related predisposition to Ascaris lumbricoides and Trichuris trichiura. Parasitology 104, 371377.
Chang, B. Y., Peavy, T. R., Wardrip, N. J. and Hedrick, J. L. (2004). The Xenopus laevis cortical granule lectin: cDNA cloning, developmental expression, and identification of the eglectin family of lectins. Comparative Biochemistry and Physiology, Part A 137, 115129.
Chang, M. X. and Nie, P. (2007). Intelectin gene from the grass carp Ctenopharyngodon idella: cDNA cloning, tissue expression, and immunohistochemical localization. Fish and Shellfish Immunology 23, 128140.
Charniga, L., Stewart, G. L., Kramar, G. W. and Stanfield, J. A. (1981). The effects of host sex on enteric response to infection with Trichinella spiralis. The Journal of Parasitology 67, 917922.
Crompton, D. W. T. (2001). Ascaris and ascariasis. Advances in Parasitology 48, 285375.
Datta, R., Deschoolmeester, M. L., Hedeler, C., Paton, N. W., Brass, A. M. and Else, K. J. (2005). Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infection and Immunity 73, 40254033.
Dold, C., Cassidy, J. P., Stafford, P., Behnke, J. and Holland, C. (2010). Genetic influence on the kinetics and associated pathology of the early stage (intestinal-hepatic) migration of Ascaris suum in mice. Parasitology 137, 173185.
Elkins, D. B., Haswell-Elkins, M. and Anderson, R. M. (1986). The epidemiology and control of intestinal helminths in the Pulicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 774792.
Faulkner, H., Renauld, J. C., Van Snick, J. and Grencis, R. K. (1998). Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infection and Immunity 66, 38323840.
Forrester, J. E., Scott, M. E., Bundy, D. A. P. and Golden, M. H. N. (1990). Predisposition of individuals and families in Mexico to heavy infection with Ascaris lumbricoides and Trichuris trichiura. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 272276.
Grossman, C. J. (1985). Interactions between the gonadal steroids and the immune system. Science 227, 257261.
Haley, A. J. (1958). Sex difference in the resistance of hamsters to infection with the rat nematode, Nippostrongylus muris. Experimental Parasitology 7, 338348.
Hall, A., Anwar, K. S. and Tomkins, A. M. (1992). Intensity of reinfection with Ascaris lumbricoides and its implications for parasite control. The Lancet 339, 12531257.
Harder, A., Wunderlich, F. and Marinovski, P. (1992). Effects of testosterone on Heterakis spumosa infections in mice. Parasitology 105, 335342.
Harder, A., Danneschewski, A. and Wunderlich, F. (1994). Genes of the mouse H-2 complex control the efficacy of testosterone to suppress immunity against the intestinal nematode Heterakis spumosa. Parasitology Research 80, 446448.
Haswell-Elkins, M. R., Elkins, D. B. and Anderson, R. M. (1987). Evidence for predisposition in humans to infection with Ascaris, hookworm, Enterobius, and Trichuris. Parasitology 95, 323337.
Hayes, K. S., Bancroft, A. J. and Grencis, R. K. (2007). The role of TNF-alpha in Trichuris muris infection. I. Influence of TNF-alpha receptor usage, gender and IL-13. Parasite Immunology 29, 575582.
Hepworth, M. R. and Grencis, R. K. (2009). Disruption of Th2 immunity results in a gender-specific expansion of IL-13 producing accessory NK cells during helminth infection. The Journal of Immunology 183, 39063914.
Hepworth, M. R., Hardman, M. J. and Grencis, R. K. (2010). The role of sex hormones in the development of Th2 immunity in a gender biased model of Trichuris muris infection. European Journal of Immunology 40, 406416.
Hillgarth, N. and Wingfield, J. C. (1997). Testosterone and immunosuppression in vertebrates: implications for parasite-mediated sexual selection. In Parasites and Pathogens: Effects on Host Hormones and Behavior (ed. Beckage, N. E.), pp. 143155. Springer, New York, USA.
Holland, C. V., Asaolu, S. O., Crompton, D. W. T., Stoddart, R. C., MacDonald, R. and Torimiro, S. E. A. (1989). The epidemiology of Ascaris lumbricoides and other soil-transmitted helminths in primary school children from Ile-Ife, Nigeria. Parasitology 99, 275285.
Holland, C. V., Crompton, D. W. T., Asaolu, S. O., Crichton, W. B., Torimiro, S. E. A. and Walters, D. E. (1992). A possible genetic factor influencing protection from infection with Ascaris lumbricoides in Nigerian children. Journal of Parasitology 78, 915916.
Ishiwata, K., Nakao, H., Nakamura-Uchiyama, F. and Nawa, Y. (2002). Immune-mediated damage is not essential for the expulsion of Nippostrongylus brasiliensis adult worms from the small intestine of mice. Parasite Immunology 24, 381386.
Kennedy, M. W., Gordon, A. M. S., Tomlinson, L. A. and Qureshi, F. (1986). Genetic (major histocompatibility complex?) control of the antibody repertoire to the secreted antigens of Ascaris. Parasite Immunology 9, 269273.
Kiyota, M., Korenaga, M., Nawa, Y. and Kotani, M. (1984). Effect of androgen on the expression of the sex difference in susceptibility to infection with Strongyloides ratti in C57BL/6 mice. Australian Journal of Experimental Biology and Medical Science 62, 607618.
Klein, S. L. (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neuroscience and Biobehavioral Reviews 24, 627638.
Klein, S. L. (2004). Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology 26, 247264.
Laudenslager, M. L. and Kennedy, S. (2008). Social dominance and immunity in animals. In Psychoneuroimmunology (ed. Ader, R.), pp. 475496. Academic Press, London, UK.
Lewis, R., Behnke, J. M., Stafford, P. and Holland, C. V. (2006). The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology 132, 289300.
Lewis, R., Behnke, J. M., Cassidy, J. P., Stafford, P., Murray, N. and Holland, C. V. (2007). The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology 134, 13011314.
Meddis, R. (1984). Statistics Using Ranks. A Unified Approach. Basil Blakwell Publishers Ltd, New York, USA.
Mitchell, G. F., Hogarth-Scott, R. S., Edwards, R. D., Lewers, H. M., Cousins, G. and Moore, T. (1976). Studies on immune responses to parasite antigens in mice. I. Ascaris suum larvae numbers and antiphosphorylcholine responses in infected mice of various strains and in hypothymic nu/nu mice. International Archives of Allergy and Applied Immunology 52, 6478.
Nejsum, P., Roepstorff, A., Jørgensen, C. B., Fredholm, M., Göring, H. H. H., Anderson, T. J. C. and Thamsborg, S. M. (2009). High heritability for Ascaris and Trichuris infection levels in pigs. Heredity 102, 357364.
O'Lorcain, P. and Holland, C. V. (2000). The public health importance of Ascaris lumbricoides. Parasitology 121, S51S71.
Peisong, G., Mao, X. Q., Enomoto, T., Feng, Z., Gloria-Bottini, F., Bottini, E., Shirakawa, T., Sun, D. and Hopkin, J. M. (2004). An asthma-associated genetic variant of STAT6 predicts low burden of Ascaris worm infestation. Genes and Immunity 5, 5862.
Pemberton, A. D., Knight, P. A., Gamble, J., Colledge, W. H., Lee, J., Pierce, M. and Miller, H. R. P. (2004 a). Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel lectin, intelectin-2 and its natural deletion in C57BL/10 mice. Journal of Immunology 173, 18941901.
Pemberton, A. D., Knight, P. A., Wright, S. H. and Miller, H. R. P. (2004 b). Proteomic analysis of mouse jejunal epithelium and its response to infection with the intestinal nematode, Trichinella spiralis. Proteomics 4, 11011108.
Peng, W., Xianmin, Z., Xiaomin, C., Crompton, D. W. T., Whitehead, R. R., Jiangqin, X., Haigeng, W., Jiyuan, P., Yang, Y. and Weixing, W. (1996). Ascaris, people and pigs in a rural community of Jiangxi Province, China. Parasitology 113, 545557.
Quinnell, R. J. (2003). Genetics of susceptibility to human helminth infection. International Journal for Parasitology 33, 12191231.
Ramsay, C. E., Hayden, C. M., Tiller, K. J., Burton, P. R., Hagel, I., Palenque, M., Lynch, N. R., Goldblatt, J. and LeSouëf, P. N. (1999). Association of polymorphisms in the ß 2-adrenoreceptor gene with higher levels of parasitic infection. Human Genetics 104, 269274.
Rohlf, F. J. and Sokal, R. R. (1995). Statistical Tables. W.H. Freeman and Company, San Francisco, CA, USA.
Solomon, G. B. (1966). Development of Nippostrongylus brasiliensis in gonadectomized and hormone-treated hamsters. Experimental Parasitology 18, 374396.
Thein-Hlaing, , Saw, T. and Lwin, M. (1987). Reinfection of people with Ascaris lumbricoides following single, 6-month and 12-month interval mass chemotherapy in Okpo village, rural Burma. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 140146.
Voehringer, D., Stanley, S. A., Cox, J. S., Completo, G. C., Lowary, T. L. and Locksley, R. M. (2007). Nippostrongylus brasiliensis: Identification of intelectin-1 and-2 as STAT6-dependent genes expressed in lung and intestine during infection. Experimental Parasitology 116, 458466.
Williams-Blangero, S., Subedi, J., Upadhayay, R. P., Manral, D. B., Rai, D. R., Jha, B., Robinson, E. S. and Blangero, J. (1999). Genetic analysis of susceptibility to infection with Ascaris lumbricoides. American Journal of Tropical Medicine and Hygiene 60, 921926.
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Aivaliotis, M. J., Rai, D. R., Upadhayay, R. P., Jha, B. and Blangero, J. (2002). Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proceedings of the National Academy of Sciences, USA 99, 55335538.
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Jha, B., Correa-Oliveira, R. and Blangero, J. (2008). Localization of multiple quantitative trait loci influencing susceptibility to infection with Ascaris lumbricoides. Journal of Infectious Diseases 197, 6671.


The role of Intelectin-2 in resistance to Ascaris suum lung larval burdens in susceptible and resistant mouse strains



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed