Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T03:24:28.861Z Has data issue: false hasContentIssue false

Revisiting the Acanthamoeba species that form star-shaped cysts (genotypes T7, T8, T9, and T17): characterization of seven new Brazilian environmental isolates and phylogenetic inferences

Published online by Cambridge University Press:  27 September 2011

ANA C. M. MAGLIANO
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, S. P., Brazil
MARTA M. G. TEIXEIRA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, S. P., Brazil
SILVIA C. ALFIERI*
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, S. P., Brazil
*
*Corresponding author. Fax: +55 11 30917417. E-mail: salfieri@icb.usp.br

Summary

Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1–T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (∼1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2 0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40°C, and resist under hyperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aksozek, A., McClellan, K., Howard, K., Niederkorn, J. Y. and Alizadeh, H. (2002). Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. Journal of Parasitology 88, 621623.CrossRefGoogle ScholarPubMed
Alfieri, S. C., Correia, C. E. B., Motegi, S. A. and Pral, E. M. F. (2000). Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites. Journal of Parasitology 86, 220227.CrossRefGoogle ScholarPubMed
Alves, J. M. P., Gusmão, C. X., Teixeira, M. M. G., Freitas, D., Foronda, A. S. and Affonso, H. T. (2000). Random amplified polymorphic DNA profiles as a tool for the characterization of Brazilian keratitis isolates of the genus Acanthamoeba. Brazilian Journal of Medical and Biological Research 33, 1926.Google Scholar
Bottone, E. J., Perez, A. A., Gordon, R. E. and Qureshi, M. N. (1994). Differential binding capacity and internalisation of bacterial substrates as factors in growth rate of Acanthamoeba spp. Journal of Medical Microbiology 40, 148154.CrossRefGoogle ScholarPubMed
Callicott, J. H. Jr., Nelson, E. C., Jones, M. M., dos Santos, J. G., Utz, J. P., Duma, R. J. and Morrison, J. V. Jr. (1968). Meningoencephalitis due to pathogenic free-living amoebae: report of two cases. Journal of the American Medical Association 206, 579582.Google Scholar
Clarke, D. W. and Niederkorn, J. Y. (2006). The pathophysiology of Acanthamoeba keratitis. Trends in Parasitology 22, 175180. doi: 10.1016/j.pt.2006.02.004.Google Scholar
Corsaro, D. and Venditti, D. (2010). Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitology Research 107, 233238. doi: 10.1007/s00436-010-1870-6.CrossRefGoogle ScholarPubMed
De Moraes, J. and Alfieri, S. C. (2008). Growth, encystment, and survival of Acanthamoeba castellanii grazing on different bacteria. FEMS Microbiology Ecology 66, 221229. doi: 10.1111/j.1574-6941.2008.00594.x.CrossRefGoogle ScholarPubMed
Ertabaklar, H., Türk, M., Dayanir, V., Ertug, S. and Walochnick, J. (2007). Acanthamoeba keratitis due to Acanthamoeba genotype T4 in a non-contact-lens wearer in Turkey. Parasitology Research 100, 241246. doi: 10.1007/s00436-006-0274-0.Google Scholar
Gast, R. J. (2001). Development of an Acanthamoeba-specific reverse dot-blot and the discovery of a new ribotype. Journal of Eukaryotic Microbiology 48, 609615. doi: 10.1111/j.1550-7408.2001.tb00199.x.Google ScholarPubMed
Gast, R. J., Ledee, D. R., Fuerst, P. A. and Byers, T. J. (1996). Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. Journal of Eukaryotic Microbiology 43, 498504. doi: 10.1111/j.1550-7408.1996.tb04510.x.Google Scholar
Hadas, E. and Mazur, T. (1993). Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp. Tropical Medicine and Parasitology 44, 197200.Google Scholar
Hewett, M. K., Robinson, B. S., Monis, P. T. and Saint, C. P. (2003). Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, (Lobosea: Acanthamoebidae). Acta Protozoologica 42, 325329.Google Scholar
Horn, M. T., Fritsche, R. K., Gautom, K. H., Schleifer, A. and Wagner, M. (1999). Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental Microbiology 4, 357367. doi:10.1046/j.1462-2920.1999.00045.x.Google Scholar
Huelsenbeck, J. P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755. doi: 10.1093/bioinformatics/17.8.754.Google Scholar
Hurt, M., Neelam, S., Niederkorn, J. and Alizadeh, H. (2003). Pathogenic Acanthamoeba spp. secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infection and Immunity 71, 62436255. doi: 0.1128/IAI.71.11.6243-6255.2003.CrossRefGoogle ScholarPubMed
Ibrahim, Y. W., Boase, D. L. and Cree, I. A. (2007). Factors affecting the epidemiology of Acanthamoeba keratitis. Ophthalmic Epidemiology 14, 5360. doi: 10.1080/09286580600920281.CrossRefGoogle ScholarPubMed
Khan, N. A. (2001). Pathogenicity, morphology, and differentiation of Acanthamoeba. Current Microbiology 43, 391395.CrossRefGoogle ScholarPubMed
Khan, N. A. (2006). Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews 30, 564595. doi: 10.1111/j.1574-6976.2006.00023.x.CrossRefGoogle ScholarPubMed
Khan, N. A. (2008). Acanthamoeba and the blood-brain barrier: the breakthrough. Journal of Medical Microbiology 57, 10511057. doi: 10.1099/jmm.0.2008/000976-0.Google Scholar
Khan, N. A., Jarroll, E. L. and Paget, T. A. (2002). Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Current Microbiology 45, 197202. doi: 10.1007/s00284-001-0108-3.Google Scholar
Khan, N. A., Jarroll, E. L., Panjwani, N., Cao, Z. and Paget, T. A. (2000). Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba. Journal of Clinical Microbiology 38, 28582861.Google Scholar
Kilvington, S., Beeching, J. R. and White, D. G. (1991). Differentiation of Acanthamoeba strains from infected corneas and the environment by using restriction endonuclease digestion of whole-cell DNA. Journal of Clinical Microbiology 29, 310314.CrossRefGoogle ScholarPubMed
Lewis, E. J. and Sawyer, T. K. (1979). Acanthamoeba tubiashi n. sp., a new species of fresh-water amoebida (Acanthamoebida). Transactions of the American Microscopy Society 98, 543549.Google Scholar
Lorenzo-Morales, J., Lindo, J. F., Martinez, E., Calder, D., Figueruelo, E., Valladares, B. and Ortega-Rivas, A. (2005 a). Pathogenic Acanthamoeba strains from water sources in Jamaica, West Indies. Annals of Tropical Medicine and Parasitology 99, 751758. doi: 10.1179/136485905X65215.CrossRefGoogle ScholarPubMed
Lorenzo-Morales, J., Monteverde-Miranda, C. A., Jiménez, C., Tejedor, M. L., Valladares, B. and Ortega-Rivas, A. (2005 b). Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Annals of Agricultural Environmental Medicine 12, 233236.Google ScholarPubMed
Lorenzo-Morales, J., Ortega-Rivas, A., Foronda, P., Martínez, E. and Valladares, B. (2005 c). Isolation and identification of pathogenic Acanthamoeba strains in Tenerife, Canary Islands, Spain from water sources. Parasitology Research 95, 273277. doi: 10.1007/s00436-005-1301-2.CrossRefGoogle ScholarPubMed
Marciano-Cabral, F. and Cabral, G. (2003). Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16, 273307. doi: 10.1128/CMR.16.2.273-307.2003.Google Scholar
Magliano, A. C., Maia da Silva, F., Teixeira, M. M. and Alfieri, S. C. (2009). Genotyping, physiological features and proteolytic activities of a potentially pathogenic Acanthamoeba sp. isolated from tap water in Brazil. Experimental Parasitology 12, 231235. doi: 10.1016/j.exppara.2009.07.006.CrossRefGoogle Scholar
Mazur, T., Hadas, E. and Iwanicka, L. (1995). The duration of the cyst stage and viability and virulence of Acanthamoeba isolates. Tropical Medicine and Parasitology 46, 106108.Google Scholar
Nuprasert, W., Putaporntip, C., Pariyakanok, L. and Jongwutiwes, S. (2010). Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. Journal of Clinical Microbiology 48, 46364640. doi:10.1128/JCM.01090–10.CrossRefGoogle ScholarPubMed
Page, F. C. (1988). A New Key to Fresh Water and Soil Gymnamoeba. Culture Collection of Algae and Protozoa, Freshwater Biological Association, Ambleside, Cumbria, England.Google Scholar
Pussard, M. and Pons, R. (1977). Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 13, 557610.Google Scholar
Ray, D. L. and Hayes, R. E. (1954). Hartmannella astronyxis: a new species of free-living ameba. Journal of Morphology 95, 159188.Google Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sriram, R., Shoff, M., Booton, G., Fuerst, P. and Visvesvara, G. S. (2008). Survival of Acanthamoeba cysts after desiccation for more than 20 years. Journal of Clinical Microbiology 46, 40454048. doi: 10.1128/JCM.01903-08.Google Scholar
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based Phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690. doi: 10.1093/bioinformatics/btl446.Google Scholar
Stothard, D. R., Schroeder-Diedrich, J. M., Awwad, M. H., Gast, R. J., Ledee, D. R., Rodriguez-Zaragoza, S., Dean, C. L., Fuerst, P. A. and Byers, T. J. (1998). The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology 45, 4554. doi: 10.1111/j.1550-7408.1998.tb05068.xCrossRefGoogle ScholarPubMed
Swofford, D. L. (1998). PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10a. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar
Thomas, V., McDonnell, G., Denyer, S. P. and Maillard, J. Y. (2010). Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews 34, 231259. doi: 10.1111/j.1574-6976.2009.00190.x.Google Scholar
Visvesvara, G. S., Jones, D. B. and Robinson, N. M. (1975). Isolation, identification, and biological characterization of Acanthamoeba polyphaga from a human eye. American Journal of Tropical Medicine and Hygiene 24, 784790.CrossRefGoogle ScholarPubMed
Weekers, P. H., Bodelier, P. L. E., Wijen, J. P. H. and Vogels, G. D. (1993). Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on various bacteria. Applied and Environmental Microbiology 59, 23172319.CrossRefGoogle ScholarPubMed