Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T23:16:19.409Z Has data issue: false hasContentIssue false

The reproductive effort of Lepeophtheirus pectoralis (Copepoda: Caligidae): insights into the egg production strategy of parasitic copepods

Published online by Cambridge University Press:  09 November 2015

D. G. FRADE
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
M. J. SANTOS
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal Departamento de Biologia, Universidade do Porto, Faculdade de Ciências, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal
F. I. CAVALEIRO*
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
*
*Corresponding author: Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, s/n, Edifício FC4, 4169-007 Porto, Portugal. E-mail: fcavaleiro@fc.up.pt

Summary

The reproductive effort of Lepeophtheirus pectoralis (Müller O. F., 1776), a caligid copepod, which is commonly found infecting the European flounder, Platichthys flesus (Linnaeus, 1758), is studied in detail for the first time. Seasonal variation in body dimensions and reproductive effort are analysed. Data for 120 ovigerous females, 30 from each season of the year, were considered in the analyses. Females were larger and produced a larger number of smaller eggs in winter, than during the summer. The relationship between egg number and egg size is similar to that recorded for other copepods exploiting fish hosts. Much of the recorded variation was also similar to that reported for a copepod parasitic on an invertebrate host, which suggests the possibility of a general trend in copepod reproduction. Overall, our results provide further support for the hypothesis that there is an alternation of summer and winter generations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angilletta, M., Steury, T. and Sears, M. (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology 44, 498509.Google Scholar
Anstensrud, M. (1990 a). Mating strategies of two parasitic copepods [(Lernaeocera branchialis (L.) (Pennellidae) and Lepeophtheirus pectoralis (Müller) (Caligidae)] on flounder: polygamy, sex-specific age at maturity and sex ratio. Journal of Experimental Marine Biology and Ecology 136, 141158.Google Scholar
Anstensrud, M. (1990 b). Moulting and mating in Lepeophtheirus pectoralis (Copepoda: Caligidae). Journal of the Marine Biological Association of the United Kingdom 70, 269281.Google Scholar
Anstensrud, M. (1992). Mate guarding and mate choice in two copepods, Lernaeocera branchialis (L.) (Pennellidae) and Lepeophtheirus pectoralis (Muller) (Caligidae), parasitic on flounder. Journal of Crustacean Biology 12, 3140.Google Scholar
Atkinson, D. (1995). Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. Journal of Thermal Biology 20, 6174.Google Scholar
Boxaspen, K. (2006). A review on the biology and genetics of sea lice. ICES Journal of Marine Species 63, 13041316.Google Scholar
Boxshall, G. (1974 a). Lepeophtheirus pectoralis (O. F. Müller, 1776); a description, a review and some comparisons with the genus Caligus Müller, 1785. Journal of Natural History 8, 445468.Google Scholar
Boxshall, G. (1974 b). The developmental stages of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Natural History 8, 681700.Google Scholar
Boxshall, G. (1974 c). The population dynamics of Lepeophtheirus pectoralis (Müller): seasonal variation in abundance and age structure. Parasitology 69, 361371.Google Scholar
Boxshall, G. (1974 d). The population dynamics of Lepeophtheirus pectoralis (Müller): dispersion pattern. Parasitology 69, 373390.Google Scholar
Boxshall, G. (1976). The host specificity of Lepeophtheirus pectoralis (Müller, 1776) (Copepoda: Caligidae). Journal of Fish Biology 8, 255264.Google Scholar
Boxshall, G. (1977). The histopathology of infection by Lepeophtheirus pectoralis (Müller) (Copepoda: Caligidae). Journal of Fish Biology 10, 411415.Google Scholar
Bravo, S., Erranz, F. and Lagos, C. (2009). A comparison of sea lice, Caligus rogercresseyi, fecundity in four areas in southern Chile. Journal of Fish Disease 32, 107113.Google Scholar
Bravo, S., Pozo, V., Silva, M. T. and Abarca, D. (2013). Comparison of the fecundity rate of Caligus rogercresseyi infesting Atlantic salmon (Salmo salar L.) on farms in two regions of Chile. Aquaculture 404–405, 5558.Google Scholar
Caley, M., Schwarzkopf, L. and Shine, R. (2001). Does total reproductive effort evolve independently of offspring size? Evolution 55, 12451248.Google ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2007). Survey of the metazoan ectoparasites of the European flounder Platichthys flesus (Linnaeus, 1758) along the North-Central portuguese coast. Journal of Parasitology 93, 12181222.CrossRefGoogle ScholarPubMed
Cavaleiro, F. I. and Santos, M. J. (2009). Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 136, 855865.Google Scholar
Cavaleiro, F. I. and Santos, M. J. (2014). Egg number-egg size: an important trade-off in parasite life history strategies. International Journal of Parasitology 44, 173182.CrossRefGoogle ScholarPubMed
Costello, M. (2009). The global economic cost of sea lice to the salmonid farming industry. Journal of Fish Diseases 32, 115118.Google Scholar
De Meeûs, T., Raibaut, A. and Renaud, F. (1993). Comparative life history of two species of sea lice. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. and Defaye, D.), pp. 6167. Ellis Horwood, Chichester, UK.Google Scholar
European Environmental Agency (2008). Biogeographical Regions in Europe: The North-East Atlantic Ocean – Huge, Deep and Heavily Exploited. http://www.eea.europa.eu/publications/report_2002_0524_154909/page121.html/#1 Google Scholar
Godfray, H. C. J. (1987). The evolution of invertebrate clutch size. Oxford Surveys in Evolutionary Biology 4, 117154.Google Scholar
Heins, D. C., Baker, J. A. and Martin, H. C. (2002). The ‘crowding effect’ in the cestode Schistocephalus solidus: density-dependent effects on plerocercoid size and infectivity. Journal of Parasitology 88, 302307.Google ScholarPubMed
Heuch, P., Nordhagen, J. and Schram, T. (2000). Egg production in the salmon louse [Lepeophtheirus salmonis (Krøyer)] in relation to origin and water temperature. Aquaculture Research 31, 805814.Google Scholar
Instituto de Metereologia – IP Portugal (2009). Acompanhamento do Clima: Mapas e Gráficos. http://www.meteo.pt/pt/oclima/acompanhamento/index.jsp?selTipo=m&selVar=su&selAna=to&selAno=2005.Google Scholar
Jones, J. T., Breeze, P. and Kusel, J. R. (1989). Schistosome fecundity: influence of host genotype and intensity of infection. International Journal for Parasitology 19, 769777.CrossRefGoogle ScholarPubMed
Lopez Cazorla, A. (2000). Age structure of the population of weakfish Cynoscion guatucupa (Cuvier) in the Bahía Blanca waters, Argentina. Fisheries Research 46, 279286.CrossRefGoogle Scholar
Marques, J. F., Santos, M. J. and Cabral, H. N. (2006 a). Soleidae macroparasites along the Portuguese coast: latitudinal variation and host–parasite associations. Marine Biology 150, 285298.Google Scholar
Marques, J. F., Teixeira, C. and Cabral, H. (2006 b). Differentiation of commercially important flatfish populations along the Portuguese coast: evidence from morphology and parasitology. Fisheries Research 81, 293305.Google Scholar
Möller, H. (1978). The effects of salinity and temperature on the development and survival of fish parasites. Journal of Fish Biology 12, 311323.CrossRefGoogle Scholar
NASA Jet Propulsion Laboratory (2009). Multi-channel sea surface temperature image obtained from http://podaac.jpl.nasa.gov/DATA_PRODUCT/SST maintained by NASA JPL Physical Oceanography DAAC, Pasadena, CA. Data for the image were provided by the Naval Oceanography Office (NAVOCEANO).Google Scholar
Nordhagen, J., Heuch, P. and Schram, T. (2000). Size as indicator of origin of salmon lice Lepeophtheirus salmonis (Copepoda: Caligidae). Contributions to Zoology 69, 99108.Google Scholar
Poulin, R. (1995). Clutch size and egg size in free-living and parasitic copepods: a comparative analysis. Evolution 49, 325336.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.Google Scholar
Ritchie, G., Mordue, A., Pike, A. and Rae, H. (1993). The reproductive effort of Lepeophtheirus salmonis adult females in relation to seasonal variability of temperature and photoperiod. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. and Defaye, D.), pp. 153165. Ellis Horwood, Chichester, UK.Google Scholar
Rohde, K. (1984). Ecology of marine parasites. Helgoländer Meeresunters 37, 533.Google Scholar
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003 a). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. A. Infection characteristics of potential indicator species. Helgoland Marine Research 57, 236251.Google Scholar
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003 b). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. C. Pollution effects on the parasite community and a comparison to biomarker responses. Helgoland Marine Research 57, 262271.Google Scholar
Schmidt, V., Zander, S., Körting, W. and Steinhagen, D. (2003 c). Parasites of the flounder Platichthys flesus (L.) from the German Bight, North Sea, and their potential use in ecosystem monitoring. B. Community structure and fish parasite biodiversity. Helgoland Marine Research 57, 252261.Google Scholar
Scott, A. (1901). Lepeophtheirus and Lernaea. Liverpool Marine Biology Committee. Memoirs on Typical British Marine Plants and Animals 6, 154.Google Scholar
Skerritt, D. J. (2010). A review of the European flounder Platichthys flesus – Biology, Life History and Trends in Population. Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.Google Scholar
Szalai, A. J. and Dick, T. A. (1989). Differences in numbers and inequalities in mass and fecundity during the egg production period of Raphidascaris acus (Nematoda: Anisakidae). Parasitology 98, 489495.CrossRefGoogle Scholar
Timi, J. T., Lanfranchi, A. L. and Poulin, R. (2005). Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola? Parasitology Research 95, 14.Google Scholar
van den Broek, W. L. F. (1979). Copepod ectoparasites of Merlangius merlangus and Platichthys flesus . Journal of Fish Biology 14, 371380.CrossRefGoogle Scholar
Wichowski, F.-J. (1990). Parasites as indicators of flounder Platichthys flesus (L.) migrations in the lower Elbe River. Fischökologie 2, 126.Google Scholar