Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T12:02:30.677Z Has data issue: false hasContentIssue false

The relationship between worm burden and levels of a circulating antigen (CAA) of five species of Schistosoma in mice

Published online by Cambridge University Press:  06 April 2009

A. Agnew
Affiliation:
Wellcome Centre for Parasitic Infections, Imperial College of Science, Technology and Medicine, London SW7 2BB, UK
A. J. C. Fulford
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
N. De Jonge
Affiliation:
Laboratory for Parasitology, University of Leiden, Wassenaarseweg 52, Leiden, The Netherlands
F. W. Krijger
Affiliation:
Laboratory for Parasitology, University of Leiden, Wassenaarseweg 52, Leiden, The Netherlands
M. Rodriguez-Chacon
Affiliation:
Wellcome Centre for Parasitic Infections, Imperial College of Science, Technology and Medicine, London SW7 2BB, UK
V. Gutsmann
Affiliation:
Wellcome Centre for Parasitic Infections, Imperial College of Science, Technology and Medicine, London SW7 2BB, UK
A. M. Deelder
Affiliation:
Laboratory for Parasitology, University of Leiden, Wassenaarseweg 52, Leiden, The Netherlands

Summary

This study examines the ability of an assay which measures the amount of a schistosome specific antigen (CAA) in the host circulation to reliably reflect relative worm burden. Mice were infected with 5 species of schistosome with a range of infection dose. The levels of serum CAA increased during schistosome maturation. In all species tested CAA levels correlated well with adult worm burden once the parasites achieved sexual maturity and remained relatively stable during the establishment of egg production. The amount of CAA produced varied between species but within each species CAA levels were proportional to worm numbers: no density-dependent effects on CAA levels were observed even when mice carried worm burdens that were very large relative to host size. T-cell deprivation of the host had no effect on the CAA/worm burden relationship in either Schistosoma mansoni or S. haematobium infections and the CAA equilibrium was unaltered in intact mice when reduction of worm fecundity occurred. These data support the use of the CAA as an accurate and robust estimate of relative schistosome burden in man.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnew, A., Murare, H. & Doenhoff, M. (1993). Immune attrition of adult schistosomes. Parasite Immunology 15, 261–71.CrossRefGoogle ScholarPubMed
Agnew, A., Murare, H., Lucas, S. & Doenhoff, M. (1989). Schistosoma bovis as an immunological analogue of S. haematobium. Parasite Immunology 11, 329–40.CrossRefGoogle ScholarPubMed
Bushara, H. O., Majid, A. A., Saad, A. M., Hussein, M. F., Taylor, M. G., Dargie, J. D., Marshall, T. F. D. & Nelson, G. S. (1980). Observations on cattle schistosomiasis in the Sudan, a study in comparative medicine. Experimental demonstration of naturally acquired resistance to Schistosoma bovis. American Journal of Tropical Medicine and Hygiene 29, 442–53.CrossRefGoogle Scholar
Cobbold, S., Jayasuriya, A., Nash, A., Prospero, T. & Waldmann, H. (1984). Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature, London 312, 548–51.CrossRefGoogle ScholarPubMed
Damian, R., Rawlings, C. & Bosshardt, S. (1986). The fecundity of Schistosoma mansoni in chronic non human primate infections and after transplantation into naive hosts. Journal of Parasitology 72, 741–7.CrossRefGoogle Scholar
de Jonge, N., de Caluwe, P., Hilberath, G., Krijger, F., Polderman, A. & Deelder, A. (1989 c). Circulating anodic antigen levels in serum before and after chemotherapy with praziquantel in schistosomiasis mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 368–72.CrossRefGoogle ScholarPubMed
de Jonge, N., Fillie, Y. & Deelder, A. (1987). A simple and rapid treatment (Trichloroacetic acid precipitation) of serum samples to prevent nonspecific reactions in the immunoassay of a proteoglycan. Journal of Immunological Methods 99, 195–7.CrossRefGoogle Scholar
de Jonge, N., Fillie, Y., Hilberath, G., Krijger, F., Lengeler, C., de Savigny, D., Van Vliet, N. & Deelder, A. (1989 a). Presence of the schistosome circulating anodic antigen (CAA) in urine of patients with Schistosoma mansoni or S. haematobium infections. American Journal of Tropical Medicine and Hygiene 41, 563–9.CrossRefGoogle ScholarPubMed
de Jonge, N., Schommer, G., Krijger, F., Feldmeier, H., Zwingenberger, K., Steiner, A., Bienzle, U. & Deelder, A. (1989 b). Presence of circulating anodic antigen in serum of Schistosoma intercalatum-infected patients from Gabon. Acta Tropica 46, 115–16.CrossRefGoogle ScholarPubMed
de Jonge, N., Schommer, G., Feldmeier, H., Krijger, F., Dafalla, A., Bienzle, U. & Deelder, A (1991). Mixed Schistosoma haematobium and S. mansoni infection: Effect of different treatments on the serum level of circulating anodic antigen (CAA). Acta Tropica 48, 2535.CrossRefGoogle Scholar
de Water, R., Fransen, J. & Deelder, A. (1986). Ultrastructural localization of the circulating anodic antigen in the digestive tract of Schistosoma mansoni using monoclonal antibodies in an immunogold labeling procedure. American Journal of Tropical Medicine and Hygiene 35, 549–58.CrossRefGoogle Scholar
Deelder, A., de Jonge, N, Boerman, O., Fillie, Y., Hilberath, G., Rotmans, J., Gerritse, M. & Lex, S. D. (1989). Sensitive determination of circulating anodic antigen in Schistosoma mansoni infected individuals by an enzyme-linked immunosorbent assay using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 40, 268–72.CrossRefGoogle ScholarPubMed
Diem, K. & Lentner, C. (1970). Documenta Geigy Scientific Tables 1, 554–7.Google Scholar
Doenhoff, M., Bickle, Q., Long, E., Bain, J. & McGregor, A. (1978). Factors affecting the acquisition of resistance against Schistosoma mansoni in the mouse. I. Demonstration of resistance to reinfection using a model system that involves perfusion of mice within three weeks of challenge. Journal of Helminthology 52, 173–86.CrossRefGoogle Scholar
Doenhoff, M., Musallam, R., Bain, J. & McGregor, A. (1979). Schistosoma mansoni infections in T-cell deprived mice, and the ameliorating effect of administering homologous chronic infection serum. American Journal of Tropical Medicine and Hygiene 28, 260–73.CrossRefGoogle ScholarPubMed
Kremsner, P., Enyong, P., Krijger, F., De Jonge, N., Zotter, G., Thalhammer, F., Mühlschlegel, F., Bienzle, U., Feldmeier, H. & Deelder, A. (1994). Circulating anodic and cathodic antigen in serum and urine from Schistosoma haematobium – infected Cameroonian children receiving praziquantel: A longitudinal study. Clinical Infectious Diseases 18, 408–13.CrossRefGoogle ScholarPubMed
Kremsner, P. G., de Jonge, N., Simarro, P. P., Mühlschlegel, F., Mir, M., Sima, F. O., Feldmeier, H., Bienzle, U. & Deelder, A. M. (1993). Quantitative determination of circulating anodic and cathodic antigens in serum and urine of individuals infected with Schistosoma intercalatum. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 167.CrossRefGoogle ScholarPubMed
Lawrence, J. (1973). Schistosoma mattheei in cattle: the host–parasite relationship. Research in Veterinary Science 14, 400–13.CrossRefGoogle ScholarPubMed
Murare, H. & Doenhoff, M. (1987). Parasitological observations of Schistosoma bovis in normal and T-cell deprived mice. Parasitology 95, 507–16.CrossRefGoogle ScholarPubMed
Nash, T. (1974). Localisation of the circulating antigen within the gut of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 23, 1085–7.CrossRefGoogle ScholarPubMed
Nash, T. (1982). Factors that modulate clearance and ultimate fate of a specific schistosome antigen (GASP) in schistosome infections. Journal of Immunology 128, 1608–13.CrossRefGoogle ScholarPubMed
Nash, T. & Deelder, A. (1985). Comparison of four schistosomes excretory-secretory antigens: phenol sulfuric test active peak, cathodic circulating antigen, gut-associated proteoglycan, and circulating anodic antigen. American Journal of Tropical Medicine and Hygiene 34, 236–41.CrossRefGoogle ScholarPubMed
Qian, Z.-L. & Deelder, A. (1983). Schistosoma japonicum: Immunological characterisation and detection of circulating polysaccharide antigens from adult worms. Experimental Parasitology 55, 168–78.CrossRefGoogle ScholarPubMed
Rollinson, D. & Simpson, A. (1987). The Biology of Schistosomes. From Genes to Latrines. London: Academic Press.Google Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695712.CrossRefGoogle ScholarPubMed
Van Leishout, L., De Jonge, N., El-Masry, N., Mansour, M., Bassily, S., Krijger, F. & Deelder, A. (1994). Monitoring the efficacy of different doses of praziquantel by quantification of circulating antigens in serum and urine of schistosomiasis patients. Parasitology 108, 519–26.CrossRefGoogle Scholar
Van't Wout, A., de Jonge, N., Tiu, W., Garcia, E., Mitchell, G. & Deelder, A. (1992). Schistosome circulating anodic antigen in serum of individuals infected with Schistosoma japonicum from the Philippines before and after chemotherapy with praziquantel. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 410–13.CrossRefGoogle ScholarPubMed
Webbe, G., James, C., Nelson, G., Smithers, S. & Terry, R. (1976). Acquired resistance to Schistosoma haematobium in the baboon (Papio anubis) after cercarial exposure and adult worm transplantation. Annals of Tropical Medicine and Parasitology 70, 411–24.CrossRefGoogle ScholarPubMed