Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T07:12:12.289Z Has data issue: false hasContentIssue false

Purification and biochemical characterization of acetylcholinesterase (AChE) from the excretory/secretory products of Trichostrongylus colubriformis

Published online by Cambridge University Press:  06 April 2009

G. Griffiths
Affiliation:
Department of Life Science, University of Nottingham, University Park, Nottingham NG7 2RD
D. I. Pritchard
Affiliation:
Department of Life Science, University of Nottingham, University Park, Nottingham NG7 2RD

Summary

Acetylcholinesterase (AChE) has been purified from the excretory/secretory (ES) products of Trichostrongylus colubriformis (using edrophonium chloride linked to epoxy-activated Sepharose) with yields of 40–50%. Purity was confirmed by polyacrylamide gel electrophoresis (using silver [protein] and Karnovsky [activity] stains) and measurement of specific AChE activity. Further analysis of the purified fractions by gel filtration and sucrose density gradient techniques revealed the existence of 2 forms of hydrophilic AChE (Mr 189 and 80 kDa). From the data we deduce these to be the globular monomer and dimer, G1 and G2 forms of AChE. Inhibition studies using BW284C51, iso-OMPA and excess substrate, along with substrate specificity studies, show both forms to be true acetylcholinesterases. We are currently assessing the protective immunogenicity of purified AChE in sheep.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blackburn, C. C. & Selkirk, M. E. (1992). Characterisation of the secretory acetylcholinesterases from adult Nippostrongylus brasiliensis. Molecular and Biochemical Parasitology 53, 7988.CrossRefGoogle ScholarPubMed
Bremner, K. C., Ogilvie, B. M., Keith, R. K. & Berrie, D. A. (1973). Acetylcholinesterase secretion by parasitic nematodes-III. Oesophagostomum spp. International Journal for Parasitology 3, 609–18.CrossRefGoogle ScholarPubMed
Ellmann, G. L., Courtney, K. D., Andrew, V. & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 8895.CrossRefGoogle Scholar
Hodgson, A. J. & Chubb, I. W. (1983). Isolation of the secretory form of acetylcholinesterase by using affinity chromatography on edrophonium sepharose. Journal of Neurochemistry 41, 654–62.CrossRefGoogle ScholarPubMed
Hogarth-Scott, R. S., Watt, B. J., Ogilvie, B. M. & Rothwell, T. L. W. (1973). The molecular size of nematode acetylcholinesterases and their separation from nematode allergens. International Journal for Parasitology 3, 735–41.CrossRefGoogle ScholarPubMed
Jones, D. G. & Knox, D. P. (1990). Evidence for the presence of nematode-derived acetylcholinesterase in sheep infected with Trichostrongylus colubriformis. Research in Veterinary Science 48, 136–7.CrossRefGoogle ScholarPubMed
Kaliner, M. & Austen, K. F. (1974). Cyclic nucleotides and modulation of effector systems of inflammation. Biochemical Pharmacology 23, 763–71.CrossRefGoogle ScholarPubMed
Karnovsky, M. J. (1964). A ‘direct-coloring’ thiocholine method for cholinesterases. Journal of Histochemistry and Cytochemistry 12, 219–21.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lapage, G. (1956). Veterinary Parasitology. London: Oliver & Boyd.Google Scholar
Larsen, J. & Overend, D. (1992). Gastro-intestinal parasites of sheep. Animal Health Victoria 2, 36.Google Scholar
Lawrence, C. E. & Pritchard, D. I. (1993). Differential secretion of acetylcholinesterase and proteases during the development of Heligmosomoides polygyrus. International Journal for Parasitology 23, 309–14.CrossRefGoogle ScholarPubMed
Lee, D. L. (1970). The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the ‘excretory glands’. Tissue and Cell 2, 225–31.CrossRefGoogle Scholar
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. (1951). Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Mallet, S. (1989). In vitro acetylcholinesterase secretion by male or female Heligmosomoides polygyrus. Annales de Recherches Veterinaires 20, 107–10.Google ScholarPubMed
Massoulie, J., Pezzementi, L., Bon, S., Krejci, E. & Vallette, F.-M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41, 3191.CrossRefGoogle ScholarPubMed
Ogilvie, B. M., Rothwell, T. L. W., Bremner, K. C., Schnitzerlinc, H. J., Nolan, L. & Keith, R. K. (1973). Acetylcholinesterase secretion by parasitic nematodes I. Evidence for the secretion of the enzyme by a number of species. International Journal for Parasitology 3, 589–97.CrossRefGoogle ScholarPubMed
Pritchard, D. I., Leggett, K. V., Rogan, M. T., McKean, P. G. & Brown, A. (1991). Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography. Parasite Immunology 13, 187–99.CrossRefGoogle ScholarPubMed
Pritchard, D. I. (1993). why do some parasitic nematodes secrete acetylcholinesterase (AChE)? International Journal for Parasitology 23, 549–50.CrossRefGoogle ScholarPubMed
Rathaur, S., Robertson, B. D., Selkirk, M. E. & Maizels, R. M. (1987). Secretory acetylcholinesterase from Brugia malayi adult and microfilarial parasites. Molecular and Biochemical Parasitology 26, 257–65.CrossRefGoogle ScholarPubMed
Rhoads, M. L. (1984). Secretory cholinesterases of nematodes: Possible functions in the host–parasite relationship. Tropical Veterinarian 2, 310.Google Scholar
Rothwell, T. L. W. & Love, R. L. (1974). Vaccination against the nematode Trichostrongylus colubriformis. I. Vaccination of guinea pigs with worm homogenates and soluble products during in vitro maintenance. International Journal for Parasitology 4, 293–9.CrossRefGoogle ScholarPubMed
Rothwell, T. L. W. & Merritt, G. C. (1975). Vaccination against the nematode Trichostrongylus colubriformis. II. Attempts to protect guinea-pigs with worm acetylcholinesterase. International Journal for Parasitology 5, 453–60.CrossRefGoogle ScholarPubMed
Rothwell, T. L. W., Ogilvie, B. M. & Love, R. J. (1973). Acetylcholinesterase secretion by parasitic nematodes. II. Trichostrongylus spp. International Journal for Parasitology 3, 599608.CrossRefGoogle ScholarPubMed
Rotundo, R. L. (1984). Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proceedings of the National Academy of Sciences, USA 81, 479–83.CrossRefGoogle ScholarPubMed
Strom, T. B., Deisseroth, A., Morganroth, J., Carpenter, C. B. & Merrill, J. P. (1972). Alteration of the cytotoxic action of sensitised lymphocytes by cholinergic agents and activators of cyclase. Proceedings of the National Academy of Sciences, USA 69, 2995–9.CrossRefGoogle ScholarPubMed
Strom, T. B., Sytkowski, A. J., Carpenter, C. B. & Merrill, J. P. (1974). Cholinergic augmentation of lymphocyte-mediated cytotoxicity. A study of the cholinergic receptor of Cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences, USA 71, 1330–3.CrossRefGoogle ScholarPubMed
Taylor, P., Schumacher, M., Macphee-Quigley, K., Friedmann, T. & Taylor, S. (1987). The structure of acetylcholinesterase: relationship to its function and cellular disposition. Trends in Neurosciences 10, 93–5.CrossRefGoogle Scholar
Toutant, J.-P. (1989). Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Progress in Neurobiology 32, 423–46.CrossRefGoogle ScholarPubMed
Yeates, R. A. & Ogilvie, B. M. (1976). Nematode acetylcholinesterases. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Van Den Bossche, H.), pp. 307310. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar