Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:52:25.041Z Has data issue: false hasContentIssue false

(Post-) Genomic approaches to tackle drug resistance in Leishmania

Published online by Cambridge University Press:  12 March 2013

MAYA BERG
Affiliation:
Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
AN MANNAERT
Affiliation:
Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
MANU VANAERSCHOT
Affiliation:
Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
GERT VAN DER AUWERA
Affiliation:
Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
JEAN-CLAUDE DUJARDIN*
Affiliation:
Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
*
*Corresponding author. Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat, 155; B-2000 Antwerpen, Belgium. Tel: 32.3.2476355. Fax: +32.3.2476359. E-mail: jcdujardin@itg.be

Summary

Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acestor, N., Masina, S., Walker, J., Saravia, N. G., Fasel, N. and Quadroni, M. (2002). Establishing two-dimensional gels for the analysis of Leishmania proteomes. Proteomics 2, 877879. doi: 10.1002/1615-9861(200207)2:7<877::AID-PROT877>3.0.CO;2-D.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Adaui, V., Castillo, D., Zimic, M., Gutierrez, A., Decuypere, S., Vanaerschot, M., De Doncker, S., Schnorbusch, K., Maes, I., Van der Auwera, G., Maes, L., Llanos-Cuentas, A., Arevalo, J. and Dujardin, J. C. (2011 a). Comparative gene expression analysis throughout the life cycle of Leishmania braziliensis: diversity of expression profiles among clinical isolates. PLoS Neglected Tropical Diseases 5, e1021. doi: 10.1371/journal.pntd.0001021.CrossRefGoogle ScholarPubMed
Adaui, V., Schnorbusch, K., Zimic, M., Gutierrez, A., Decuypere, S., Vanaerschot, M., De Docker, S., Maes, I., Llanos-Cuentas, A., Chappuis, F., Arevalo, J. and Dujardin, J. C. (2011 b). Comparison of gene expression patterns among Leishmania braziliensis clinical isolates showing a different in vitro susceptibility to pentavalent antimony. Parasitology 138, 183193. doi: 10.1017/S0031182010001095.CrossRefGoogle ScholarPubMed
Akopyants, N. S., Matlib, R. S., Bukanova, E. N., Smeds, M. R., Brownstein, B. H., Stormo, G. D. and Beverley, S. M. (2004). Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology 136, 7186. doi: 10.1016/j.molbiopara.2004.03.002.CrossRefGoogle ScholarPubMed
Alcolea, P. J., Alonso, A., Gómez, M. J., Moreno, I., Domínguez, M., Parro, V. and Larraga, V. (2010). Transcriptomics throughout the life cycle of Leishmania infantum: high down regulation rate in the amastigote stage. International Journal for Parasitology 40, 14971516. doi: 10.1016/j.ijpara2010.05.013.CrossRefGoogle ScholarPubMed
Almeida, R., Gilmartin, B. J., McCann, S. H., Norrish, A., Ivens, A. C., Lawson, D., Levick, M. P., Smith, D. F., Dyall, S. D., Vetrie, D., Freeman, T. C., Coulson, R. M., Sampaio, I., Schneider, H. and Blackwell, J. M. (2004). Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology 136, 87100. doi: 10.1016/j.molbiopara.2004.03.004.CrossRefGoogle Scholar
Alvar, J., Vélezm, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M. and WHO Leishmaniasis Control Team. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7, e35671. doi: 10.1371/journal.pone.0035671.CrossRefGoogle ScholarPubMed
Ashutosh, , Sundar, S. and Goyal, N. (2007). Molecular mechanisms of antimony resistance in Leishmania. Journal of Medical Microbiology 56, 143153. doi: 10.1099/jmm.0.46841-0.Google Scholar
Bente, M., Harder, S., Wiesgigl, M., Heukeshoven, J., Gelhaus, C., Krause, E., Clos, J. and Bruchhaus, I. (2003). Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3, 18111829. doi: 10.1002/pmic.200300462CrossRefGoogle ScholarPubMed
Berg, M., Vanaerschot, M., Jankevics, A., Cuypers, B., Breitling, R. and Dujardin, J. C. (2012). LC-MS metabolomics from study design to data-analysis – using a versatile pathogen as a test case. Computational and Structural Biotechnology Journal 4, e201301002. doi: 10.5936/csbj.201301002CrossRefGoogle Scholar
Beverley, S. M. (1991). Gene amplification in Leishmania. Annual Reviews of Microbiology 45, 417444. doi: 10.1146/annurev.mi.45.100191.002221.CrossRefGoogle ScholarPubMed
Bhandari, V., Kulshrestha, A., Deep, D. K., Stark, O., Prajapati, V. K., Ramesh, V., Sundar, S., Schonian, G., Dujardin, J. C. and Salotra, P. (2012). Drug susceptibility in Leishmania isolates following miltefosine treatment in cases of visceral leishmaniasis and post kala-azar dermal leishmaniasis. PLoS Neglected Tropical Diseases 6, e1657. doi: 10.1371/journal.pntd.0001657.CrossRefGoogle ScholarPubMed
Billal, D. S., Feng, J., Leprohon, P., Légaré, D. and Ouellette, M. (2011). Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 12, 512. doi: 10.1186/1471-2164-12-512.CrossRefGoogle ScholarPubMed
Breitling, R., Bakker, B. M., Barret, M. P., Decuypere, S. and Dujardin, J. C. (2012). Metabolomic systems biology of protozoan parasites. In Genetics Meets Metabolomics: from Experiment to Systems Biology (ed. Suhre, K.), pp. 7384. Springer Science+Business Media LLC2012. New York, Heidelburg, Dordecht, London. doi: 10.1007/978-1-4614-1689-0_6.CrossRefGoogle Scholar
Canuto, G. A. B., Castilho-Martins, E. A., Tavares, M., López-Gonzálvez, A., Rivas, L. and Barbas, C. (2012). CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 33, 19011910. doi: 10.1002/elps.20120000.CrossRefGoogle ScholarPubMed
Carter, K. C., Hutchison, S., Henriquez, F. L., Légaré, D., Ouellette, M., Roberts, C. W. and Mullen, A. B. (2006). Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrobial Agents and Chemotherapy 50, 8895. doi: 10.1128/AAC.50.1.88-95.2006.CrossRefGoogle Scholar
Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D. and Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin – susceptible –resistant Leishmania donovani. PLoS ONE 6, e26660. doi: 10.1371/journal.pone.0026660.CrossRefGoogle ScholarPubMed
Choudhury, K., Zander, D., Kube, M., Reinhardt, R. and Clos, J. (2008). Identification of a Leishmania infantum gene mediating resistance to miltefosine and SbIII. International Journal for Parasitology 38, 14111423. doi: 10.1016/j.ijpara.2008.03.005.CrossRefGoogle ScholarPubMed
Clayton, C. and Shapira, M. (2007). Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156, 93101. doi: 10.1016/j.molbiopara.2007.07.007.CrossRefGoogle ScholarPubMed
Clos, J. and Choudhury, K. (2006). Functional cloning as a means to identify Leishmania genes involved in drug resistance. Mini-Reviews in Medicinal Chemistry 6, 123129.CrossRefGoogle ScholarPubMed
Coelho, A. C., Boisvert, S., Mukherjee, A., Leprohon, P., Corbeil, J. and Ouellette, M. (2012). Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Neglected Tropical Diseases 6, e1512. doi: 10.1371/journal.pntd.0001512.CrossRefGoogle ScholarPubMed
Cohen-Freue, G., Holzer, T. R., Forney, J. D. and McMaster, W. R. (2007). Global gene expression in Leishmania. International Journal for Parasitology 37, 10771086. doi: 10.1016/j.ijpara.2007.04.011.CrossRefGoogle ScholarPubMed
Cojean, S., Houzé, S., Haouchine, D., Huteau, F., Lariven, S., Hubert, V., Michard, F., Bories, C., Pratlong, F., Le Bras, J., Loiseau, P. M. and Matheron, S. (2012). Leishmania resistance to miltefosine associated with genetic marker. Emerging Infectious Diseases 18, 704706. doi: 10.3201/eid1804.110841.CrossRefGoogle ScholarPubMed
Costa, D. L., Carregaro, V., Lima-Júnior, D. S., Silva, N. M., Milanezi, C. M., Cardoso, C. R., Giudice, A., de Jesus, A. R., Carvalho, E. M., Almeida, R. P. and Silva, J. S. (2011). BALB/c mice infected with antimony treatment refractory isolate of Leishmania braziliensis present severe lesions due to IL-4 production. PLoS Neglected Tropical Diseases 5, e965. doi: 10.1371/journal.pntd.0000965.CrossRefGoogle ScholarPubMed
Croft, S. L., Yardley, V. and Kendrick, H. (2002). Drug sensitivity of Leishmania species: some unresolved problems. Transactions of the Royal Society of Tropical Medicine and Hygiene 96 Suppl 1, S127S129. doi: 10.1128/CMR.19.1.111-126.2006.CrossRefGoogle ScholarPubMed
Croft, S. L., Sundar, S. and Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical Microbiology Reviews 19, 111126. doi: 10.1128/CMR.19.1.111-126.2006.CrossRefGoogle ScholarPubMed
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005). Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621. doi: 10.1128/AAC.49.11.4616-4621.2005.CrossRefGoogle ScholarPubMed
Decuypere, S., Vanaerschot, M., Rijal, S., Yardley, V., Maes, L., De Doncker, S., Chappuis, F. and Dujardin, J. C. (2008). Gene expression profiling of Leishmania (Leishmania) donovani: overcoming technical variation and exploiting biological variation. Parasitology 135, 183194. doi: 10.1017/S0031182007003782.CrossRefGoogle ScholarPubMed
Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Muller, S., Khanal, B., Rijal, S., Dujardin, J. C. and Coombs, G. H. (2012). Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases 6, e1514. doi: 10.1371/journal.pntd.0001514.CrossRefGoogle ScholarPubMed
De Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C. and Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry 51, 3146. doi: 10.1042/BSE0510031.Google ScholarPubMed
do Monte-Neto, R. L., Coelho, A. C., Raymond, F., Légaré, D., Corbeil, J., Melo, M. N., Frézard, F. and Ouellette, M. (2011). Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Neglected Tropical Diseases 5, e1167. doi: 10.1371/journal.pntd.0001167.CrossRefGoogle ScholarPubMed
Dorlo, T. P., Balasegaram, M., Beijnen, J. H. and de Vries, P. J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy 67, 25762597. doi: 10.1093/jac/dks275.CrossRefGoogle ScholarPubMed
Downing, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., Hilley, J. D., De Doncker, S., Maes, I., Mottram, J. C., Quail, M. A., Rijal, S., Sanders, M., Schönian, G., Stark, O., Sundar, S., Vanaerschot, M., Hertz-Fowler, C., Dujardin, J. C. and Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research 21, 21432156. doi: 10.1101/gr.123430.111.CrossRefGoogle ScholarPubMed
Dujardin, J. C., Campino, L., Cañavate, C., Dedet, J. P., Gradoni, L., Soteriadou, K., Mazeris, A., Ozbel, Y. and Boelaert, M. (2008). Spread of vector-borne diseases and neglect of Leishmaniasis, Europe. Emerging Infectious Diseases 14, 10131018. doi: 10.3201/eid1407.071589.CrossRefGoogle ScholarPubMed
El Fadili, K., Drummelsmith, J., Roy, G., Jardim, A. and Ouelette, M. (2009). Downregulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Experimental Parasitology 123, 5157. doi:10.1016/j.exppara.2009.05.013.CrossRefGoogle ScholarPubMed
Fu, J., Keurentjes, J. J., Bouwmeester, H., America, T., Verstappen, F. W. A., Ward, J. L., Beale, M., de Vos, R. C. H., Dijkstra, M., Scheltema, R. A., Johannes, F., Koornneef, M., Vreugdenhil, D., Breitling, R. and Jansen, R. C. (2009). System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics 41, 166167. doi: 10.1038/ng.308.CrossRefGoogle ScholarPubMed
García-Hernández, R., Manzano, J. I., Castanys, S. and Gamarro, F. (2012). Leishmania donovani develops resistance to drug combinations. PLOS Neglected Tropical Diseases 6, e1974. doi: 10.1371/journal.pntd.0001974.CrossRefGoogle ScholarPubMed
Government of India—National Vector Borne Disease Control Programme. Guideline on Use of Miltefosine. http://nvbdcp.gov.in/Guidelinesonmiltefosine.pdf.Google Scholar
Grondin, K., Papadopoulou, B. and Ouellette, M. (1993). Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Research 25, 18951901.CrossRefGoogle Scholar
Haile, S. and Papadopoulou, B. (2007). Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology 10, 569577. doi: 10.1016/j.mib.2007.10.001.CrossRefGoogle ScholarPubMed
Haldar, A. K., Yadav, V., Singhai, E., Bisht, K. K., Singh, A., Bhaumid, S., Basu, R., Sen, P. and Roy, S. (2010). Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation. PLoS Pathogens 6, e1000907. doi: 10.1371/journal.ppat.1000907.CrossRefGoogle Scholar
Hendrickx, S., Inocêncio da Luz, R. A., Bhandari, V., Kuypers, K., Shaw, C. D., Lonchamp, J., Salotra, P., Carter, K., Sundar, S., Rijal, S., Dujardin, J. C., Cos, P. and Maes, L. (2012). Experimental induction of Paromomycin resistance in antimony-resistant strains of L. donovani: outcome sependent on in vitro selection protocol. PLoS Neglected Tropical Diseases 6, e1644. doi: 10.1371/journal.pntd.0001664.CrossRefGoogle Scholar
Homuth, G., Teumer, A., Volker, U. and Nauck, M. (2012). A description of large-scale metabolomics studies - Increasing value by combining metabolomics with genome-wide SNP genotyping and transcriptional profiling. Journal of Endocrinology 215, 1728. doi: 10.1530/JOE-12-0144.CrossRefGoogle ScholarPubMed
Huang, Y., Wuchty, S., Ferdig, M. T. and Przytycka, T. M. M. (2009). Graph theoretical approach to study eQTL: a case study of Plasmodium falciparum. Bioinformatics 25, i15i20. doi: 10.1093/bioinformatics/btp189.CrossRefGoogle ScholarPubMed
Inga, R., De Doncker, S., Gomez, J., Lopez, M., Garcia, R., Le Ray, D., Arevalo, J. and Dujardin, J. C. (1998). Relation between variation in copy number of ribosomal RNA encoding genes and size of harbouring chromosomes in Leishmania of subgenus Viannia. Molecular and Biochemical Parasitology 92, 219228.CrossRefGoogle ScholarPubMed
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.-A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M. R., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Müller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'Neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schäfer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, d.f., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442. doi: 10.1126/science.1112680.CrossRefGoogle ScholarPubMed
Kellina, O. I. (1961). A study of experimental cutaneous leishmaniasis in white mice. Meditsinskaia parazitologiia (Mosk) 30, 684691.Google ScholarPubMed
Kramer, S. (2012). Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Molecular and Biochemical Parasitology 181, 6172. doi: 10.1016/j.molbiopara.2011.10.002.CrossRefGoogle ScholarPubMed
Kulshrestha, A., Bhandari, V., Mukhopadhyay, R., Ramesh, V., Sundar, S., Maes, L., Dujardin, J. C., Roy, S. and Salotra, P. (2013). Validation of a simple resazurin based promastigote assay for the routine monitoring of Miltefosine susceptibility in clinical isolates of Leishmania donovani. Parasitology Research 112, 825828. doi: 10.1007/s00436-012-3212-3.CrossRefGoogle ScholarPubMed
Kumar, D., Singh, R., Bhandari, V., Kulshrestha, A., Negi, N. S. and Salotra, P. (2012). Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitology Research 111, 223230. doi: 10.1007/s00436-012-2823-z.CrossRefGoogle ScholarPubMed
Lachaud, L., Bourgeois, N., Plourde, M., Leprohon, P., Bastien, P. and Ouellette, M. (2009). Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and Leishmania infantum. Clinical Infectious Diseases 48, e16e22. doi: 10.1086/595710.CrossRefGoogle ScholarPubMed
Lahav, T., Sivam, D., Volpin, H., Ronen, M., Tsigankov, P., Green, A., Holland, N., Kuzyk, M., Borchers, C., Zilberstein, D. and Myler, P. J. (2011). Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB Journal 25, 515525. doi: 10.1096/fj.10-157529.CrossRefGoogle ScholarPubMed
Lakshmanan, V., Rhee, K. Y. and Daily, J. P. (2011). Metabolomics and malaria biology. Molecular and Biochemical Parasitology 175, 104111. doi: 10.1016/j.molbiopara.2010.09.008.CrossRefGoogle ScholarPubMed
Leifso, K., Cohen-Freue, G., Dogra, N., Murray, A. and McMaster, W. R. (2007). Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Molecular and Biochemical Parasitology 152, 3546. doi: 10.1016/j.molbiopara.2006.11.009.CrossRefGoogle ScholarPubMed
Leprohon, P., Légaré, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J. and Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Research 37, 12871399. doi: 10.1093/nar/gkn1069.CrossRefGoogle ScholarPubMed
Mandal, S., Maharjan, M., Singh, S., Chatterjee, M. and Madhubala, R. (2010). Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. Journal of Antimicrobial Chemotherapy 65, 496507. doi: 10.1093/jac/dkp468.CrossRefGoogle ScholarPubMed
Mannaert, A., Downing, T., Imamura, H. and Dujardin, J. C. (2012). Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends in Parasitology 28, 370376. doi: 10.1016/j.pt.2012.06.003.CrossRefGoogle ScholarPubMed
Matlashewski, G., Arana, B., Kroeger, A., Battacharya, S., Sundar, S., Das, P., Sinha, P. K., Rijal, S., Mondal, D., Zilberstein, D. and Alvar, J. (2011). Visceral leishmaniasis: elimination with existing interventions. Lancet Infectious Diseases 11, 322325. doi: 10.1016/S1473-3099(10)70320-0.CrossRefGoogle ScholarPubMed
Minodier, P. and Parola, P. (2007). Cutaneous leishmaniasis treatment. Travel Medicine and Infectious Disease 5, 150158. doi: 10.1016/j.tmaid.2006.09.004.CrossRefGoogle ScholarPubMed
Morales, M., Watanabe, R., Dacher, M., Chafey, P., Osorio y Fortéa, J., Scott, D. A., Beverley, S. M., Ommen, G., Clos, J., Hem, S., Lenormand, P., Rousselle, J. C., Namane, A. and Späth, G. F. (2010). Phosophoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proceedings of the National Academy of Sciences, USA 107, 83818386. doi: 10.1073/pnas.0914768107.CrossRefGoogle Scholar
Mukherjee, B., Mukhopadhyay, R., Bannerjee, B., Chowdhury, S., Mukherjee, S., Naskar, K., Allam, U. S., Chakravortty, D., Sundar, S., Dujardin, J. C. and Roy, S. (2013). Antimony resistant but not antimony sensitive Leishmania donovani upregulates host IL-10 to overexpress host multi drug resistant protein 1. Proceedings of the National Academy of Sciences, USA 110, e575–82. doi: 10.1073/pnas.1213839110.CrossRefGoogle ScholarPubMed
Mukhopadhyay, R., Mukherjee, S., Mukherjee, B., Naskar, K., Mondal, D., Decuypere, S., Ostyn, B., Prajapati, V. K., Sundar, S., Dujardin, J. C. and Roy, S. (2011). Characterisation of antimony-resistant Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells. International Journal for Parasitology 41, 13111321. doi: 10.1016/j.ijpara.2011.07.013.CrossRefGoogle ScholarPubMed
Murta, S. M. F., Vickers, T. J., Scott, D. A. and Beverley, S. M. (2009). Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Molecular Microbiology 71, 13861401. doi: 10.1111/j.1365-2958.2009.06610.x.CrossRefGoogle ScholarPubMed
Narayan, S., Bimal, S., Singh, S. K., Gupta, A. K., Singh, V. P., Sinha, P. K. and Das, P. (2009). Leishmania donovani vs immunity: T-cells sensitized from Leishmania of one donor may modulate their cytokines pattern on re-stimulation with Leishmania from different donor in visceral leishmaniasis. Experimental Parasitology 121, 6975. doi: 10.1016/j.exppara.2008.09.015.CrossRefGoogle ScholarPubMed
Neal, R. A. (1968). The effect of antibiotics of the neomycin group on experimental cutaneous leishmaniasis. Annals of Tropical Medicine and Parasitology 62, 5462.CrossRefGoogle Scholar
Nugent, P. G., Karsani, S. A., Wait, R., Tempero, J. and Smith, d.f. (2004). Proteomic analysis of Leishmania mexicana differentiation. Molecular and Biochemical Parasitology 136, 5162. doi: 10.1016/j.molbiopara.2004.02.009.CrossRefGoogle ScholarPubMed
Olliaro, P. L., Guerin, P. J., Gerstl, S., Haaskjold, A. A., Rottingen, J. A. and Sundar, S. (2005). Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980-2004. Lancet Infectious Diseases 5, 763774. doi: 10.1016/S1473-3099(05)70296-6.CrossRefGoogle ScholarPubMed
Ostyn, B., Gidwani, K., Khanal, B., Picado, A., Chappuis, F., Singh, S. P., Rijal, S., Sundar, S. and Boelaert, M. (2011). Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Neglected Tropical Diseases 5, e1284. doi: 10.1371/journal.pntd.0001284.CrossRefGoogle ScholarPubMed
Ouellette, M., Hettema, E., Wüst, D., Fase-Fowler, F. and Borst, P. (1991). Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO Journal 10, 10091016.CrossRefGoogle ScholarPubMed
Pagès, M., Bastien, P., Veas, F., Rossi, V., Bellis, M., Wincker, P., Rioux, J. A. and Roizès, G. (1989). Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange. Molecular and Biochemical Parasitology 36, 161168.CrossRefGoogle ScholarPubMed
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L., Faulconbridge, A., Jeffares, D., Depledge, D. P., Oyola, S. O., Hilley, J. D., Brito, L. O., Tosi, L. R. O., Barrell, B., Cruz, A. K., Mottram, J. C., Smith, D. F. and Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847. doi: 10.1038/ng2053.CrossRefGoogle ScholarPubMed
Pérez-Victoria, F. J., Gamarro, F., Ouellette, M. and Castanys, S. (2003). Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. Journal of Biological Chemistry 278, 4996549971. doi: 10.1074/jbc.M308352200.CrossRefGoogle ScholarPubMed
Pérez-Victoria, F. J., Sanchez-Canete, M. P., Seifert, K., Croft, S. L., Sundar, S., Castanys, S. and Gamarro, F. (2006). Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resistance Updates 9, 2639. doi: 10.1016/j.drup.2006.04.001.CrossRefGoogle ScholarPubMed
Rahman, M., Ahmed, B. N., Faiz, M. A., Chowdhury, M. Z., Islam, Q. T., Sayeedur, R., Rahman, M. R., Hossain, M., Bangali, A. M., Ahmad, Z., Islam, M. N., Mascie-Taylor, C. G., Berman, J. and Arana, B. (2011). Phase IV trial of miltefosine in adults and children for treatment of visceral leishmaniasis (kala-azar) in Bangladesh. American Journal of Tropical Medicine and Hygiene 85, 6669. doi: 10.4269/ajtmh.2011.10-0661.CrossRefGoogle ScholarPubMed
Raymond, F., Boisvert, S., Roy, G., Ritt, J. F., Légaré, D., Isnard, A., Stanke, M., Olivier, M., Tremblay, M. J., Papadopoulou, B., Ouellette, M. and Corbeil, J. (2012). Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Research 40, 11311147. doi: 10.1093/nar/gkr834.CrossRefGoogle Scholar
Requena, J. M. (2011). Lights and shadows on gene organization and regulation of gene expression in Leishmania. Frontiers in Bioscience 16, 20692085. doi: 10.2741/3840.CrossRefGoogle ScholarPubMed
Rijal, S., Ostyn, B., Uranw, S., Rai, K., Bhattarai, N. R., Dorlo, T., Beijnen, J. H., Vanaerschot, M., Decuypere, S., Dhakal, S. S., Das, L. M., Karki, P., Singh, R., Boelaert, M. and Dujardin, J. C. (2013). Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, re-infection or non-compliance. Clinical Infectious Diseases (in press)CrossRefGoogle ScholarPubMed
Rijal, S., Yardley, V., Chappuis, F., Decuypere, S., Khanal, B., Singh, R., Boelaert, M., De Doncker, S., Croft, S. and Dujardin, J. C. (2007). Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes and Infection 9, 529535. doi: 10.1016/j.micinf.2007.01.009.CrossRefGoogle ScholarPubMed
Robinson, K. A. and Beverley, S. (2003). Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan Leishmania. Molecular and Biochemical Parasitology 18, 217228. doi: 10.1016/S0166-6851(03)00079-3.CrossRefGoogle Scholar
Rogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., Harris, D., Her, Y., Herzyk, P., Imamura, H., Otto, T. D., Sanders, M., Seeger, K., Dujardin, J. C., Berriman, M., Smith, D. F., Hertz-Fowler, C. and Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research 21, 21292142. doi: 10.1101/gr.122945.111.CrossRefGoogle ScholarPubMed
Rougeron, V., De Meeûs, T., Hide, M., Waleckx, E., Bermudez, H., Arevalo, J., Llanos-Cuentas, A., Dujardin, J. C., De Doncker, S., Le Ray, D., Ayala, F. J. and Bañuls, A. L. (2009). Extreme inbreeding in Leishmania braziliensis. Proceedings of the National Academy of Sciences, USA 106, 1022410229. doi: 10.1073/pnas.0904420106.CrossRefGoogle ScholarPubMed
Sánchez-Cañete, M. P., Carvalho, L., Pérez-Victoria, F. J., Gamarro, F. and Castanys, S. (2009). Low plasma membrane expression of the miltefosine transport complex renders Leishmania braziliensis refractory to the drug. Antimicrobial Agents and Chemotherapy 53, 13051313. doi: 10.1128/AAC.01694-08.CrossRefGoogle ScholarPubMed
Saxena, A., Lahav, T., Holland, N., Anupama, A., Huang, G., Volpin, H., Myler, P. J. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology 152, 5365. doi: 10.1016/j.molbiopara.2006.11.011.CrossRefGoogle ScholarPubMed
Scheltema, R. A., Decuypere, S., t'Kindt, R., Dujardin, J. C., Coombs, G. H. and Breitling, R. (2010). The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology 137, 12911302. doi: 10.1017/S0031182009992022.CrossRefGoogle ScholarPubMed
Silva, A. M., Cordeiro-da-Silva, A. and Coombs, G. H. (2011). Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS Neglected Tropical Diseases 5, e1451. doi: 10.1371/journal.pntd.0001451.CrossRefGoogle ScholarPubMed
Singh, B. and Sundar, S. (2012). Leishmaniasis: vaccine candidates and perspectives. Vaccine 30, 38343842. doi: 10.1016/j.vaccine.2012.03.068.CrossRefGoogle Scholar
Singh, N., Almeida, R., Kothari, H., Kumar, P., Mandal, G., Chatterjee, M., Venkatachalam, S., Govind, M. K., Mandal, S. K. and Sundar, S. (2007). Differential gene expression analysis in antimony-unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray. Parasitology 134, 777787. doi: 10.1017/S0031182007002284.CrossRefGoogle ScholarPubMed
Singh, N., Kumar, M. and Sing, R. K. (2012). Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine 5, 485497. doi: 10.1016/S1995-7645(12)60084-4.CrossRefGoogle ScholarPubMed
Singh, R., Kumar, D., Duncan, R. C., Nakhasi, H. L. and Salotra, P. (2010). Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. International Journal of Antimicrobial Agents 36, 5057. doi: 10.1016/j.ijantimicag.2010.03.012.CrossRefGoogle ScholarPubMed
Sterkers, Y., Lachaud, L., Crobu, L., Bastien, P. and Pagès, M. (2011). FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cellular Microbiology 13, 274283. doi: 10.1111/j.1462-5822.2010.01534.x.CrossRefGoogle ScholarPubMed
Sterkers, Y., Lachaud, L., Bourgeois, N., Crobu, L., Bastien, P. and Pagès, M. (2012). Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Molecular Microbiology 86, 1523. doi: 10.1111/j.1365-2958.2012.08185.x.CrossRefGoogle ScholarPubMed
Sundar, S. and Rai, M. (2002). Advances in the treatment of leishmaniasis. Current Opinion in Infectious Diseases 15, 593598. doi: 10.1097/01.qco.0000044778.05458.f9.CrossRefGoogle ScholarPubMed
Sundar, S., More, D. K., Singh, M. K., Singh, V. P., Sharma, S., Makharia, A., Kumar, P. C. K. and Murray, H. W. (2000). Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clinical Infectious Diseases 31, 11041107. doi: 10.1086/318121.CrossRefGoogle Scholar
Sundar, S., Mondal, D., Rijal, S., Batthacharya, S., Ghalib, H., Kroeger, A., Boelaert, M., Desjeux, P., Richter-Airijoki, H. and Harms, G. (2008). Implementation research to support the initiative on the elimination of kala azar from Bangladesh, India and Nepal—the challenges for diagnosis and treatment. Tropical Medicine and International Health 13, 25. doi: 10.1111/j.1365-3156.2007.01974.CrossRefGoogle Scholar
Sundar, S., Sinha, P. K., Rai, M., Verma, D. K., Nawin, K., Aalam, S., Chakravarty, J., Vaillant, M., Verma, N., Pandey, K., Kumari, P., Lal, C. S., Arora, R., Sharma, B., Ellis, S., Strub-Wourgaft, N., Balasegaram, M., Olliaro, P., Das, P. and Modabber, F. (2011). Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377, 477486. doi: 10.1016/S0140-6736(10)62050-8.CrossRefGoogle ScholarPubMed
Sundar, S., Singh, A., Rai, M., Prajapati, V. K., Singh, A. K., Ostyn, B., Boelaert, M., Dujardin, J. C. and Chakravarty, J. (2012). Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clinical Infectious Diseases 55, 543550. doi: 10.1093/cid/cis474.CrossRefGoogle ScholarPubMed
Thakur, C. P., Mitra, D. K. and Narayan, S. (2003). Skewing of cytokine profiles towards T helper cell type 2 response in visceral leishmaniasis patients unresponsive to sodium antimony gluconate. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 409412.CrossRefGoogle ScholarPubMed
t'Kindt, R., Scheltema, R. A., Jankevics, A., Brunker, K., Rijal, S., Dujardin, J. C., Breitling, R., Watson, D. G., Coombs, G. H. and Decuypere, S. (2010). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases 4, e904. doi: 10.1371/journal.pntd.0000904.CrossRefGoogle ScholarPubMed
Tsigankov, P., Gherardini, P. F., Helmer-Citterich, M. and Zilberstein, D. (2012). What has proteomics taught us about Leishmania development? Parasitology 139, 11461157. doi: 10.1017/S0031182012000157.CrossRefGoogle ScholarPubMed
Ubeda, J. M., Légaré, D., Raymond, F., Ouameur, A. A., Boisvert, S., Rigault, P., Corbeil, J., Tremblay, M. J., Olivier, M., Papadopoulou, B. and Ouellette, M. (2008). Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biology 9, R115. doi: 10.1186/gb-2008-9-7-r115.CrossRefGoogle ScholarPubMed
Vanaerschot, M., Decuypere, S., Berg, M., Roy, S. and Dujardin, J. C. (2012). Drug-resistant microorganisms with a higher fitness – can medicines boost pathogens? Critical Reviews in Microbiology Epub Sep 6. doi: 10.3109/1040841X.2012.716818.Google ScholarPubMed
Van der Auwera, G., Fraga, J., Montalvo, A. M. and Dujardin, J. C. (2011). Leishmania taxonomy up for promotion? Trends in Parasitology 27, 4950. doi: 10.1016/j.pt.2010.11.007.CrossRefGoogle ScholarPubMed
Vermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P. and Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial Agents and Chemotherapy 53, 38553859. doi: 10.1128/AAC.00548-09.CrossRefGoogle ScholarPubMed
Walker, J., Gongora, R., Vasquez, J. J., Drummelsmith, J., Burchmore, R., Roy, G., Ouelette, M., Gomez, M. A. and Saravia, N. G. (2012). Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Molecular and Biochemical Parasitology 183, 166176. doi:10.1016/j.molbiopara.2012.03.002.CrossRefGoogle ScholarPubMed
Yardley, V., Croft, S. L., De Doncker, S., Dujardin, J. C., Koirala, S., Rijal, S., Miranda, C., Llanos-Cuentas, A. and Chappuis, F. (2005). The sensitivity of clinical isolates of Leishmania from Peru and Nepal to miltefosine. American Journal of Tropical Medicine and Hygiene 73, 272275.CrossRefGoogle ScholarPubMed