Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T20:48:17.823Z Has data issue: false hasContentIssue false

Physiological and histochemical observations on the adult liver fluke, Fasciola hepatica L. I. Survival in vitro

Published online by Cambridge University Press:  06 April 2009

William Stephenson
Affiliation:
Department of Zoology, The University, Bristol*

Extract

1. In an alkaline inorganic solution containing borate, no bacterial disintegration of tissues occurs in a week.

2. Survival is prolonged by adding sugars to this solution, but not by the addition of bile salt or peptone. Monosaccharides are more effective than disaccharides, and both may enter the worm through its body wall.

3. The effect of variations in certain physicochemical conditions was studied. Wide ranges of osmotic pressure, of the K/Naratio, and of the Ca/Na ratio, have little effect on the worms. The optimum pH is c. 8.4, and t h e optimum temperature c. 36° C. Approximately anaerobic conditions decrease the survival time.

4. The effect of various bactericides, bacteriostatics and anthelmintics upon the worm were investigated in a preliminary manner. Many bactericides are toxic, certain anthelmintics are not. Survival is prolonged by 1/5000 trypan blue.

5. A satisfactory medium for large-scale ‘culturing’ is: NaCl 150 mM., KC1 10 mM., CaCl2 1 mM., borax 6 mM., glucose 30 mM. (pH 8.6). In this the worms survive for c. 60 hr. at a temperature of 36° C.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, E. (1943). Parasitology, 35, 69.CrossRefGoogle Scholar
Buckmaster, G. A. & Hickmann, R. B. (1926). J. Physiol. 61, XVII.Google Scholar
Chu, H. J. (1938). Chin. Med. J. 54, 409.Google Scholar
Chu, H. J. (1940). Chin. Med. J. Suppl. 3, 255.Google Scholar
Drury, D. R., McMaster, P. D. & Rous, P. (1923). J. Exp. Med. 39, 403.CrossRefGoogle Scholar
Erhardt, A. (1939). Arch. Schiffs- u. Tropenhyg. 43, 15.Google Scholar
Erhardt, A. & Brumpt, L. (1933). Arch. Schiffs- u. Tropenhyg. 37, 18.Google Scholar
Flury, F. & Léeb, F. (1926). Klin. Wschr. 5, 2054.CrossRefGoogle Scholar
Harnisch, O. (1932). Z. vergl. Physiol. 17, 365.CrossRefGoogle Scholar
Hoeppli, R. & Chu, H. J. (1937). Festschrift B. Nocht. 80. Geburtstag, Hamburg, p. 199.Google Scholar
Hsü, H. F. (1939). Chin. Med. J. 56, 122.Google Scholar
Kollarth, W. & Erhardt, A. (1936). Biochem. Z. 287, 287.Google Scholar
Krantz, J. C., Feldmann, M., Morrison, S. & Carb, C. J. (1936). Proc. Soc. Exp. Biol., N.Y., 35, 48.CrossRefGoogle Scholar
Lamson, P. D., Minot, A. S. & Robbins, B. H. (1928). J. Amer. Med. Ass. 90, 345.CrossRefGoogle Scholar
Mace, E. (1882). Recherches anatomiques sur la grande douve du foie. Thèse de médecine. Paris.Google Scholar
Minot, A. S. (1927). Proc. Soc. Exp. Biol., N.Y., 24, 617.CrossRefGoogle Scholar
Minot, A. S. & Cutler, J. T. (1928). J. Clin. Invest. 6, 369.CrossRefGoogle Scholar
Müller, W. (1923). Zool. Anz. 57, 273.Google Scholar
Ottenburg, R. & Kahn, J. (1932). Proc. Soc. Exp. Biol., N.Y., 29, 573.CrossRefGoogle Scholar
Railliet, A. (1890). Bull. Soc. zool. Fr. 15, 88.Google Scholar
Schopper, W. H. (1932). Rev. Suisse Zool. 39, 59.CrossRefGoogle Scholar
Slater, W. K. (1928). Biol. Rev. 3, 303.CrossRefGoogle Scholar
Sobotka, H. (1937). The Physiological Chemistry of the Bile. London.Google Scholar
Sommer, F. (1880). Z. miss. Zool. 34, 539.Google Scholar
Weinland, E. & Von Brand, T. (1926). Z. vergl. Physiol. 4, 212.CrossRefGoogle Scholar
Winsauer, F. (1899). Inaug. Diss. München.Google Scholar