Skip to main content Accessibility help
×
Home

Phage-fused epitopes from Leishmania infantum used as immunogenic vaccines confer partial protection against Leishmania amazonensis infection

  • LOURENA EMANUELE COSTA (a1), MIGUEL ANGEL CHÁVEZ-FUMAGALLI (a1), VIVIAN TAMIETTI MARTINS (a2), MARIANA COSTA DUARTE (a1) (a3), DANIELA PAGLIARA LAGE (a3), MAYARA I. S. LIMA (a4), NATHÁLIA CRISTINA DE JESUS PEREIRA (a1), MANUEL SOTO (a5), CARLOS ALBERTO PEREIRA TAVARES (a2), LUIZ RICARDO GOULART (a4) (a6) and EDUARDO ANTONIO FERRAZ COELHO (a1) (a3)...

Summary

Two mimotopes of Leishmania infantum identified by phage display were evaluated as vaccine candidates in BALB/c mice against Leishmania amazonensis infection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) after in vitro spleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws’ draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8+ T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy against Leishmania spp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology against L. infantum infected dogs sera, which induced a partial protection in BALB/c mice infected with L. amazonensis.

Copyright

Corresponding author

* Corresponding author. Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31·270-901 Belo Horizonte, Minas Gerais, Brazil. E-mail: eduardoferrazcoelho@yahoo.com.br

References

Hide All
Afonso, L. C. and Scott, P. (1993). Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis . Infection and Immunity 61, 29522959.
Afrin, F., Anam, K. and Ali, N. (2000). Induction of partial protection against Leishmania donovani by promastigotes antigens in negatively charged liposomes. Journal of Parasitology 89, 730735.
Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J. and De Boer, M. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7, e35671.
Bacon, K. M., Hotez, P. J., Kruchten, S. D., Kamhawi, S., Bottazzi, M. E., Valenzuela, J. G. and Lee, B. Y. (2013). The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine 31, 480486.
Barbas, C. F., Burton, D. R., Scott, J. K. and Silverman, G. J. (2001). Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Barbour, A. G. and Restrepo, B. I. (2000). Antigenic variation in vector-borne pathogens. Emerging Infectious Diseases 6, 449457.
Barral, A., Pedral-Sampaio, D., Grimaldi, G., Momen, H., McMahon-Pratt, D., Ribeiro-de-Jesus, A., Almeida, R., Badaro, R., Barral-Netto, M., Carvalho, E. M. and Johnson, W. D. (1991). Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. American Journal of Tropical Medicine and Hygiene 44, 536546.
Basu, R., Roy, S. and Walden, P. (2007). HLA class I-restricted T cell epitopes of the kinetoplastid membrane protein-11 presented by Leishmania donovani-infected human macrophages. The Journal of Infectious Diseases 195, 13731380.
Bazan, J., Całkosiñski, I. and Gamian, A. (2012). Phage display: a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Human Vaccines and Immunotherapeutics 8, 18171828.
Bertholet, S., Goto, Y., Carter, L., Bhatia, A., Howard, R. F., Carter, D., Coler, R. N., Vedvick, T. S. and Reed, S. G. (2009). Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine 27, 70367045.
Borja-Cabrera, G. P., Santos, F. N., Bauer, F. S., Parra, L. E., Menz, I., Morgado, A. A., Soares, I. S., Batista, L. M. and Palatnik-de-Sousa, C. B. (2008). Immunogenicity assay of the Leishmune vaccine against canine visceral leishmaniasis in Brazil. Vaccine 26, 49914997.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
Bruttin, A., Brüssow, H. and Bru, H. (2005). Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial Agents and Chemotherapy 49, 28742878.
Carrión, J., Nieto, A., Iborra, S., Iniesta, V., Soto, M., Folgueira, C., Abanades, D. R., Requena, J. M. and Alonso, C. (2006). Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunology 28, 173183.
Carrión, J., Folgueira, C. and Alonso, C. (2008). Immunization strategies against visceral leishmaniosis with the nucleosomal histones of Leishmania infantum encoded in DNA vaccine or pulsed in dendritic cells. Vaccine 26, 25372544.
Cerpa-Cruz, S., Paredes-Casillas, P., Landeros Navarro, E., Bernard-Medina, A. G., Martínez-Bonilla, G. and Gutiérrez-Ureña, S. (2013). Adverse events following immunization with vaccines containing adjuvants. Immunologic Research 56, 299303.
Chávez-Fumagalli, M. A., Costa, M. A. F., Oliveira, D. M., Ramírez, L., Costa, L. E., Duarte, M. C., Martins, V. T., Oliveira, J. S., Olortegi, C. C., Bonay, P., Alonso, C., Tavares, C. A. P., Soto, M. and Coelho, E. A. F. (2010). Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge. Microbes and Infection 12, 967977.
Cherwonogrodzky, J. W., Barabé, N. D., Grigat, M. L., Lee, W. E., Poirier, R. T., Jager, S. J. and Berger, B. J. (2014). Thermostable cross-protective subunit vaccine against Brucella species. Clinical and Vaccine Immunology 21, 16811688.
Clark, J. R. and March, J. B. (2004). Bacteriophage-mediated nucleic acid immunisation. FEMS Immunology and Medical Microbiology 40, 2126.
Coelho, E. A. F., Tavares, C. A., Carvalho, F. A., Chaves, K. F., Teixeira, K. N., Rodrigues, R. C., Charest, H., Matlashewski, G., Gazzinelli, R. T. and Fernandes, A. P. (2003). Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infection and Immunity 71, 39883994.
Coelho, V. T. S., Oliveira, J. S., Valadares, D. G., Chávez-Fumagalli, M. A., Duarte, M. C., Lage, P. S., Soto, M., Santoro, M. M., Tavares, C. A. P., Fernandes, A. P. and Coelho, E. A. F. (2012). Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Neglected Tropical Diseases 6, e1430.
Coomber, D. W. and Ward, R. L. (2001). Isolation of human antibodies against the central DNA binding domain of p53 from an individual with colorectal cancer using antibody phage display. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 7, 28022808.
Costa, C. H. N., Peters, N. C., Maruyama, S. R., de Brito, E. C., Santos, I. K. F. D. M., Ali, N., Brodskyn, C., Campos-Neto, A., Carvalho, E. M., Chang, K. P., Fernandes, A. P., Fujiwara, R., Gazzinelli, R., Goto, H., Grimaldi, G., Kaye, P., Kedzierski, L., Khamesipour, A., Maia, C., McMaster, W. R., Mendonça, S. C. F., Nakhasi, H. L., Piazza, F., Quinnell, R., Reis, A. B., Santos-Gomes, G., Shaw, J., Valenzuela, J., Walden, P. and Werneck, G. (2011). Vaccines for the leishmaniases: proposals for a research agenda. PLoS Neglected Tropical Diseases 5, e943.
Costa, L. E., Goulart, L. R., Pereira, N. C. J., Ingrid, M., Lima, S., Duarte, M. C., Martins, V. T., Lage, P. S., Menezes-Souza, D., Ribeiro, T. G., Melo, M. N., Fernandes, A. P., Soto, M., Alberto, C., Tavares, P., Fumagalli, M. A. C. and Ferraz, E. A. F. (2014). Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis. PLoS ONE 9, e110014.
Croft, S. L. and Coombs, G. H. (2003). Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology 19, 502508.
Cunha-Júnior, J. P., Silva, D. A. O., Silva, N. M., Souza, M. A., Souza, G. R. L., Prudencio, C. R., Pirovani, C. P., Cezar, M., Cascardo, J., Barbosa, B. F., Goulart, L. R. and Mineo, J. R. (2010). A4D12 monoclonal antibody recognizes a new linear epitope from SAG2A Toxoplasma gondii tachyzoites, identified by phage display bioselection. Immunobiology 215, 2637.
Das, A. and Ali, N. (2012). Vaccine prospects of killed but metabolically active Leishmania against visceral leishmaniasis. Expert Review of Vaccines 11, 783785.
Dey, R., Dagur, P. K., Selvapandiyan, A., Mc Coy, J. P., Salotra, P., Duncan, R. and Nakhasi, H. L. (2013). Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. Journal of Immunology (Baltimore, MD.: 1950) 190, 21382149.
Dumas, C., Muyombwe, A., Roy, G., Matte, C., Ouellette, M., Olivier, M. and Papadopoulou, B. (2003). Recombinant Leishmania major secreting biologically active granulocyte-macrophage colony-stimulating factor survives poorly in macrophages in vitro and delays disease development in mice. Infection and Immunity 71, 64996509.
Duthie, M. S., Raman, V. S., Piazza, F. M. and Reed, S. G. (2012). The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 30, 134141.
Fernandes, A. P., Costa, M. M. S., Coelho, E. A. F., Michalick, M. S. M., Freitas, E., Melo, M. N., Tafuri, W. L., Resende, D. D. M., Hermont, V., Abrantes, C. D. F. and Gazzinelli, R. T. (2008). Protective immunity against challenge with Leishmania (Leishmania) chagasi in beagle dogs vaccinated with recombinant A2 protein. Vaccine 26, 58885895.
Frenkel, D., Katz, O. and Solomon, B. (2000). Immunization against Alzheimer's beta-amyloid plaques via EFRH phage administration. Proceedings of the National Academy of Sciences of the United States of America 97, 1145511459.
Gamage, L. N. A., Ellis, J. and Hayes, S. (2009). Immunogenicity of bacteriophage lambda particles displaying porcine Circovirus 2 (PCV2) capsid protein epitopes. Vaccine 27, 65956604.
Gao, J., Wang, Y., Liu, Z. and Wang, Z. (2010). Phage display and its application in vaccine design. Annals of Microbiology 60, 1319.
Garcez, L. M., Goto, H., Ramos, P. K., Brigido, M. D. C., Gomes, P. A. F., Souza, R. A., De Luca, P. M., Mendonça, S. C., Muniz, J. A. P. C. and Shaw, J. J. (2002). Leishmania (Leishmania) amazonensis-induced cutaneous leishmaniasis in the primate Cebus apella: a model for vaccine trials. International Journal for Parasitology 32, 17551764.
García, L., Jidy, M. D., García, H., Boris, L., Fernández, R., Año, G., Valmaseda, T., Suzarte, E., Ramírez, M., Pino, Y., Campos, J., Menéndez, J., González, D., González, I., Pérez, O., Serrano, T., Lastre, M., Miralles, F., Maestre, J. L., Pérez, J. L., Pérez, A., Marrero, K., Ledón, T., Garcı, L., , M., Rodrı, B. L., Ramı, M., Mene, J., Valera, R., Gonza, et al. (2005). The vaccine candidate Vibrio cholerae 638 is protective against cholera in healthy volunteer. Infection and Immunity 73, 30183024.
Goldenthal, K. L., Cavagnaro, J. A., Alving, C. R. and Vogel, F. R. (1993). National cooperative vaccine development working group. Safety evaluation of vaccine adjuvants. AIDS Research and Human Retroviruses 9, S45S49.
Gomes, R., Teixeira, C., Teixeira, M. J., Oliveira, F., Menezes, M. J., Silva, C., Oliveira, C. I., Miranda, J. C., Elnaiem, D. E., Kamhawi, S., Valenzuela, J. G. and Brodskyn, C. I. (2008). Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proceedings of the National Academy of Sciences of the United States of America 105, 78457850.
Goto, Y., Bhatia, A., Raman, V. S., Liang, H., Mohamath, R., Picone, A. F., Vidal, S. E. Z., Vedvick, T. S., Howard, R. F. and Reed, S. G. (2011). KSAC, the first defined polyprotein vaccine candidate for visceral leishmaniasis. Clinical and Vaccine Immunology 18, 11181124.
Grimaldi, G. and Tesh, R. B. (1993). Leishmaniases of the New World: current concepts and implications for future research. Clinical Microbiology Reviews 6, 230250.
Gu, Y., Li, J., Zhu, X., Yang, J., Li, Q., Liu, Z., Yu, S. and Li, Y. (2008). Trichinella spiralis: characterization of phage-displayed specific epitopes and their protective immunity in BALB/c mice. Experimental Parasitology 118, 6674.
Gumy, A., Louis, J. A. and Launois, P. (2004). The murine model of infection with Leishmania major and its importance for the deciphering of mechanisms underlying differences in Th cell differentiation in mice from different genetic backgrounds. International Journal for Parasitology 34, 433444.
Hamad, M. (2011). Universal vaccines: shifting to one for many or shooting too high too soon! APMIS 119, 565573.
Hardy, B. and Raiter, A. (2005). A mimotope peptide-based anti-cancer vaccine selected by BAT monoclonal antibody. Vaccine 23, 42834291.
Hashemi, H., Bamdad, T., Jamali, A., Pouyanfard, S. and Mohammadi, M. G. (2010). Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine. Journal of Virological Methods 163, 440444.
Heithoff, D. M., House, J. K., Thomson, P. C. and Mahan, M. J. (2015). Development of a Salmonella cross-protective vaccine for food animal production systems. Vaccine 33, 100107.
Iborra, S., Parody, N., Abánades, D. R., Bonay, P., Prates, D., Novais, F. O., Barral-Netto, M., Alonso, C. and Soto, M. (2008). Vaccination with the Leishmania major ribosomal proteins plus CpG oligodeoxynucleotides induces protection against experimental cutaneous leishmaniasis in mice. Microbes and Infection 10, 11331141.
Kanduc, D., Stufano, A., Lucchese, G. and Kusalik, A. (2008). Massive peptide sharing between viral and human proteomes. Peptides 29, 17551766.
Kyes, S. A., Kraemer, S. M. and Smith, J. D. (2007). Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family. Eukaryotic Cell 6, 15111520.
Lobigs, M. and Diamond, M. S. (2012). Feasibility of cross-protective vaccinations agains flaviviruses of the Japanese encephalitis serocomplex. Expert Reviews of Vaccines 11, 177187.
Manoutcharian, K. (2005). Bacteriophages as tools for vaccine and drug development. Expert Reviews of Vaccines 4, 57.
Manoutcharian, K., Gevorkian, G., Cano, A. and Almagro, J. C. (2001). Phage displayed biomolecules as preventive and therapeutic agents. Current Pharmaceutical Biotechnology 2, 217223.
Manoutcharian, K., Díaz-Orea, A., Gevorkian, G., Fragoso, G., Acero, G., González, E., De Aluja, A., Villalobos, N., Gómez-Conde, E. and Sciutto, E. (2004). Recombinant bacteriophage-based multiepitope vaccine against Taenia solium pig cysticercosis. Veterinary Immunology and Immunopathology 99, 1124.
Margonari, C., Freitas, C. R., Ribeiro, R. C., Moura, A. C. M., Timbó, M., Gripp, A. H., Pessanha, J. E. and Dias, E. S. (2006). Epidemiology of visceral leishmaniasis through spatial analysis, in Belo Horizonte municipality, state of Minas Gerais, Brazil. Memórias do Instituto Oswaldo Cruz 101, 3138.
Martins, V. T., Chávez-Fumagalli, M. A., Costa, L. E., Martins, A. M. C. C., Lage, P. S., Lage, D. P., Duarte, M. C., Valadares, D. G., Magalhães, R. D. M., Ribeiro, T. G., Nagem, R. A. P., DaRocha, W. D., Regis, W. C. B., Soto, M., Coelho, E. A. F., Fernandes, A. P. and Tavares, C. A. P. (2013). Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Neglected Tropical Diseases 7, e2148.
Minodier, P. and Parola, P. (2007). Cutaneous leishmaniasis treatment. Travel Medicine and Infectious Disease 5, 150158.
Mizbani, A., Taheri, T., Zahedifard, F., Taslimi, Y., Azizi, H., Azadmanesh, K., Papadopoulou, B. and Rafati, S. (2009). Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28, 5362.
Modabber, F. (2010). Leishmaniasis vaccines: past, present and future. International Journal of Antimicrobial Agents 36S, 5861.
Moreno, J., Vouldoukis, I., Martin, V., McGahie, D., Cuisinier, A. M. and Gueguen, S. (2012). Use of a LiESP/QA-21 vaccine (CaniLeish) stimulates an appropriate Th1-dominated cell-mediated immuneresponse in dogs. PLoS Neglected Tropical Diseases 6, e1683.
Murray, H. W., Cervia, J. S., Hariprashad, J., Taylor, A. P., Stoeckle, M. Y. and Hockman, H. (1995). Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. Journal of Clinical Investigation 95, 11831192.
Nico, D., Gomes, D. C., Alves-Silva, M. V., Freitas, E. O., Morrot, A., Bahia, D., Palatnik, M., Rodrigues, M. M. and Palatnik-de-Sousa, C. B. (2014). Cross-protective immunity to Leishmania amazonensis is mediated by CD4+ and CD8+ epitopes of Leishmania donovani nucleoside hydrolase terminal domains. Frontiers in Immunology 5, 110.
Noben-Trauth, N., Lira, R., Nagase, H., Paul, W. E. and Sacks, D. L. (2003). The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major . Journal of Immunology (Baltimore, MD, 1950) 170, 51525158.
O'Hagan, D. T. and Rappuoli, R. (2004). Novel approaches to vaccine delivery. Pharmaceutical Research 21, 15191530.
Pitcovsky, T. A., Mucci, J., Alvarez, P., Leguizamón, M. S., Burrone, O., Alzari, P. M. and Campetella, O. (2001). Epitope mapping of trans-sialidase from Trypanosoma cruzi reveals the presence of several cross-reactive determinants. Infection and Immunity 69, 18691875.
Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Aricò, B., Comanducci, M., Jennings, G. T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C. L., Luzzi, E., Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S., Scarselli, M., Storni, E., Zuo, P., Broeker, M., Hundt, E., Knapp, B., Blair, E., Mason, T., Tettelin, H., Hood, D. W., Jeffries, A. C. et al. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science (New York, NY) 287, 18161820.
Ramírez, L., Santos, D. M., Souza, A. P., Coelho, E. A. F., Barral, A., Alonso, C., Escutia, M. R., Bonay, P., Oliveira, C. I. and Soto, M. (2013). Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis. Vaccine 31, 13121319.
Ramirez, L., Corvo, L., Duarte, M. C., Chávez-Fumagalli, M. a, Valadares, D. G., Santos, D. M., de Oliveira, C. I., Escutia, M. R., Alonso, C., Bonay, P., Tavares, C. A. P., Coelho, E. A. F. and Soto, M. (2014). Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites and Vectors 7, 3.
Real, F., Vidal, R. O., Carazzolle, M. F., Mondego, J. M. C., Costa, G. G. L., Herai, R. H., Würtele, M., de Carvalho, L. M., e Ferreira, R. C., Mortara, R. A., Barbiéri, C. L., Mieczkowski, P., Da Silveira, J. F., Briones, M. R. D. S., Pereira, G. A. G. and Bahia, D. (2013). The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Research 20, 567581.
Reithinger, R., Dujardin, J.-C., Louzir, H., Pirmez, C., Alexander, B. and Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases 7, 581596.
Requena, J. M., Iborra, S., Carrion, J., Alonso, C. and Soto, M. (2004). Recent advances in vaccines for leishmaniasis. Expert Opinion on Biological Therapy 4, 15051517.
Riedel, S. (2005). Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University Medical Center) 18, 2125.
Rosa, R., Marques, C., Rodrigues, O. R. and Santos-Gomes, G. M. (2007). Immunization with Leishmania infantum released proteins confers partial protection against parasite infection with a predominant Th1 specific immune response. Vaccine 25, 45254532.
Smith, G. P. and Petrenko, V. A. (1997). Phage display. Chemical Reviews 97, 391410.
Spitzer, N., Jardim, A., Lippert, D. and Olafson, R. W. (1999). Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17, 12981300.
Van der Vaart, J. M., Pant, N., Wolvers, D., Bezemer, S., Hermans, P. W., Bellamy, K., Sarker, S. A., Van der Logt, C. P. E., Svensson, L., Verrips, C. T., Hammarstrom, L. and Van Klinken, B. J. W. (2006). Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine 24, 41304137.
Wagner, S., Hafner, C., Allwardt, D., Jasinska, J., Ferrone, S., Zielinski, C. C., Scheiner, O., Wiedermann, U., Pehamberger, H. and Breiteneder, H. (2005). Vaccination with a human high molecular weight melanoma-associated antigen mimotope induces a humoral response inhibiting melanoma cell growth in vitro . The Journal of Immunology 174, 976982.
Wan, Y., Wu, Y., Bian, J., Wang, X. Z., Zhou, W., Jia, Z. C., Tan, Y. and Zhou, L. (2001). Induction of hepatitis B virus-specific cytotoxic T lymphocytes response in vivo by filamentous phage display vaccine. Vaccine 19, 29182923.
Wang, L. F. and Yu, M. (2004). Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Current Drug Targets 5, 115.
World Health Organization (2010). Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. World Health Organization Tech Rep Ser 949. WHO, Geneva.
Zanin, F. H. C., Coelho, E. A. F., Tavares, C. a P., Marques-da-Silva, E. A., Silva Costa, M. M., Rezende, S. A., Gazzinelli, R. T. and Fernandes, A. P. (2007). Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes and Infection 9, 10701077.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed