Skip to main content Accessibility help
×
×
Home

Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus

  • Karina M. Rebello (a1), Livia A. Uehara (a1), Vítor Ennes-Vidal (a1), Aline S. Garcia-Gomes (a1) (a2), Constança Britto (a3), Patrícia Azambuja (a4), Rubem F. S. Menna-Barreto (a5), André L. S. Santos (a6), Marta H. Branquinha (a6) and Claudia M. d'Avila-Levy (a1) (a7)...

Abstract

Trypanosoma cruzi is the causative agent of Chagas disease, a vector-borne disease. The parasite molecules involved in vector interaction have been little investigated. Metallopeptidases and gp63 molecules have been implicated in parasite adhesion of several trypanosomatids to the insect midgut. Although gp63 homologues are highly expanded in the T. cruzi genome, and are implicated in parasite–mammalian host interaction, its role in the insect vector has never been explored. Here, we showed that divalent metal chelators or anti-Tcgp63-I antibodies impaired T. cruzi adhesion to Rhodnius prolixus midgut. Parasites isolated after insect colonization presented a drastic enhancement in the expression of Tcgp63-I. These data highlight, for the first time, that Tcgp63-I and Zn-dependent enzymes contribute to the interaction of T. cruzi with the insect vector.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Claudia M. d'Avila-Levy, E-mail: davila.levy@ioc.fiocruz.br, davila.levy@gmail.com

References

Hide All
Abad-Franch, F, Diotaiuti, L, Gurgel-Goncalves, R and Gurtler, RE (2013) Certifying the interruption of Chagas disease transmission by native vectors: cui bono? Memorias do Instituto Oswaldo Cruz 108, 251254.
Alvarez, VE, Niemirowicz, GT and Cazzulo, JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochimica et Biophysica Acta 1824, 195206.
Azambuja, P and Garcia, ES (1997) Care and maintenance of triatomine colonies. In Crampton, JM, Beard, CB and Loius, C (eds), Molecular Biology of Insect Disease Vectors: a methods manual. London: Chapman and Hall, pp. 5664.
Azambuja, P, Ratcliffe, NA and Garcia, ES (2005) Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. Anais da Academia Brasileira de Ciencias 77, 397404.
Basombrio, MA, Gomez, L, Padilla, AM, Ciaccio, M, Nozaki, T and Cross, GA (2002) Targeted deletion of the gp72 gene decreases the infectivity of Trypanosoma cruzi for mice and insect vectors. Journal of Parasitology 88, 489493.
Bern, C, Kjos, S, Yabsley, MJ and Montgomery, SP (2011) Trypanosoma cruzi and Chagas’ disease in the United States. Clinical Microbiology Reviews 24, 655681.
Bonaldo, MC, d'Escoffier, LN, Salles, JM and Goldenberg, S (1991) Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Experimental Parasitology 73, 4451.
Bouvier, J, Bordier, C, Vogel, H, Reichelt, R and Etges, R (1989) Characterization of the promastigote surface protease of Leishmania as a membrane-bound zinc endopeptidase. Molecular and Biochemical Parasitology 37, 235245.
Branquinha, MH, Marinho, FA, Sangenito, LS, Oliveira, SS, Goncalves, KC, Ennes-Vidal, V, d'Avila-Levy, CM and Santos, ALS (2013) Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Current Medicinal Chemistry 20, 31743185.
Branquinha, MH, Oliveira, SS, Sangenito, LS, Sodre, CL, Kneipp, LF, d'Avila-Levy, CM and Santos, ALS (2015) Cruzipain: an update on its potential as chemotherapy target against the human pathogen Trypanosoma cruzi. Current Medicinal Chemistry 22, 22252235.
Bronfen, E, de Assis Rocha, FS, Machado, GB, Perillo, MM, Romanha, AJ and Chiari, E (1989) Isolation of Trypanosoma cruzi samples by xenodiagnosis and hemoculture from patients with chronic Chagas’ disease. Memorias do Instituto Oswaldo Cruz 84, 237240.
Callejas-Hernandez, F, Rastrojo, A, Poveda, C, Girones, N and Fresno, M (2018) Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Scientific Reports 8, 14631.
Cazzulo, JJ, Cazzulo Franke, MC, Martinez, J and Franke de Cazzulo, BM (1990) Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochimica et Biophysica Acta 1037, 186191.
Chaudhuri, G and Chang, KP (1988) Acid protease activity of a major surface membrane glycoprotein (gp63) from Leishmania mexicana promastigotes. Molecular and Biochemical Parasitology 27, 4352.
Cuevas, IC, Cazzulo, JJ and Sanchez, DO (2003) Gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity 71, 57395749.
d'Avila-Levy, CM, Souza, RF, Gomes, RC, Vermelho, AB and Branquinha, MH (2003) A metalloproteinase extracellularly released by Crithidia deanei. Canadian Journal of Microbiology 49, 625632.
d'Avila-Levy, CM, Dias, FA, Nogueira de Melo, A, Martins, J, Lopes, AHCS, Santos, ALS, Vermelho, AB and Branquinha, MH (2006 a) Insights into the role of gp63-like proteins in lower trypanosomatids. FEMS Microbiology Letters 254, 149156.
d'Avila-Levy, CM, Altoe, EC, Uehara, LA, Branquinha, MH and Santos, ALS (2014) GP63 function in the interaction of trypanosomatids with the invertebrate host: facts and prospects. Subcellular Biochemistry 74, 253270.
d'Avila-Levy, CM, Santos, LO, Marinho, FA, Dias, FA, Lopes, AH, Santos, ALS and Branquinha, MH (2006 b) Gp63-like molecules in Phytomonas serpens: possible role in the insect interaction. Current Microbiology 52, 439444.
de Jesus, AR, Cooper, R, Espinosa, M, Gomes, JE, Garcia, ES, Paul, S and Cross, GA (1993) Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. Journal of Cell Science 106(Pt 4), 10231033.
El-Sayed, NM and Donelson, JE (1997) African trypanosomes have differentially expressed genes encoding homologues of the Leishmania GP63 surface protease. Journal of Biological Chemistry 272, 2674226748.
Ennes-Vidal, V, Menna-Barreto, RF, Santos, ALS, Branquinha, MH and d'Avila-Levy, CM (2011) MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut. PLoS One 6, e18371.
Garcia, ES, Genta, FA, Azambuja, P and Schaub, GA (2010) Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends in Parasitology 26, 499505.
Gonzalez, MS, Silva, LC, Albuquerque-Cunha, JM, Nogueira, NF, Mattos, DP, Castro, DP, Azambuja, P and Garcia, ES (2011) Involvement of sulfated glycosaminoglycans on the development and attachment of Trypanosoma cruzi to the luminal midgut surface in the vector, Rhodnius prolixus. Parasitology 138, 18701877.
Grandgenett, PM, Coughlin, BC, Kirchhoff, LV and Donelson, JE (2000) Differential expression of GP63 genes in Trypanosoma cruzi. Molecular and Biochemical Parasitology 110, 409415.
Heussen, C and Dowdle, EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry 102, 196202.
Isnard, A, Shio, MT and Olivier, M (2012) Impact of Leishmania metalloprotease GP63 on macrophage signaling. Frontiers in Cellular and Infection Microbiology 2, 72.
Kulkarni, MM, Olson, CL, Engman, DM and McGwire, BS (2009) Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infection and Immunity 77, 21932200.
Lowry, OH, Rosebrough, NJ, Farr, AL and Randall, RJ (1951) Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.
Nogueira de Melo, AC, d'Avila-Levy, CM, Dias, FA, Armada, JL, Silva, HD, Lopes, AHCS, Santos, ALS, Branquinha, MH and Vermelho, AB (2006) Peptidases and gp63-like proteins in Herpetomonas megaseliae: possible involvement in the adhesion to the invertebrate host. International Journal for Parasitology 36, 415422.
Nogueira, NF, Gonzalez, MS, Gomes, JE, de Souza, W, Garcia, ES, Azambuja, P, Nohara, LL, Almeida, IC, Zingales, B and Colli, W (2007) Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Experimental Parasitology 116, 120128.
Noireau, F, Diosque, P and Jansen, AM (2009) Trypanosoma cruzi: adaptation to its vectors and its hosts. Veterinary Research 40, 26.
Olivier, M, Atayde, VD, Isnard, A, Hassani, K and Shio, MT (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and Infection 14, 13771389.
Pereira, FM, Bernardo, PS, Dias Junior, PF, Silva, BA, Romanos, MT, d'Avila-Levy, CM, Branquinha, MH and Santos, ALS (2009) Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells. Parasitology Research 104, 347353.
Pereira, FM, Dias, FA, Elias, CG, d'Avila-Levy, CM, Silva, CS, Santos-Mallet, JR, Branquinha, MH and Santos, ALS (2010) Leishmanolysin-like molecules in Herpetomonas samuelpessoai mediate hydrolysis of protein substrates and interaction with insect. Protist 161, 589602.
Perez-Molina, JA and Molina, I (2018) Chagas disease. Lancet 391, 8294.
Rassi, A Jr, Rassi, A and Marcondes de Rezende, J (2012) American trypanosomiasis (Chagas disease). Infectious Disease Clinics of North America 26, 275291.
Roberts, SC, Wilson, ME and Donelson, JE (1995) Developmentally regulated expression of a novel 59-kDa product of the major surface protease (Msp or gp63) gene family of Leishmania chagasi. Journal of Biological Chemistry 270, 88848892.
Sadlova, J, Volf, P, Victoir, K, Dujardin, JC and Votypka, J (2006) Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol (Praha) 53, 8190.
Salazar, R, Castillo-Neyra, R, Tustin, AW, Borrini-Mayori, K, Naquira, C and Levy, MZ (2015) Bed bugs (Cimex lectularius) as vectors of Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene 92, 331335.
Sangenito, LS, Ennes-Vidal, V, Marinho, FA, Da Mota, FF, Santos, ALS, d'Avila-Levy, CM and Branquinha, MH (2009) Arrested growth of Trypanosoma cruzi by the calpain inhibitor MDL28170 and detection of calpain homologues in epimastigote forms. Parasitology 136, 433441.
Santiago, PB, de Araujo, CN, Motta, FN, Praca, YR, Charneau, S, Bastos, IM and Santana, JM (2017) Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity – a review. Parasites & Vectors 10, 79.
Santos, ALS, Branquinha, MH and d'Avila-Levy, CM (2006) The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. Anais da Academia Brasileira de Ciencias 78, 687714.
Santos, LO, Marinho, FA, Altoe, EF, Vitorio, BS, Alves, CR, Britto, C, Motta, MC, Branquinha, MH, Santos, ALS and d'Avila-Levy, CM (2009) HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One 4, e4918.
Santos, ALS, Sodre, CL, Valle, RS, Silva, BA, Abi-Chacra, EA, Silva, LV, Souza-Goncalves, AL, Sangenito, LS, Goncalves, DS, Souza, LO, Palmeira, VF, d'Avila-Levy, CM, Kneipp, LF, Kellett, A, McCann, M and Branquinha, MH (2012) Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis. Current Medicinal Chemistry 19, 27152737.
Siqueira-Neto, JL, Debnath, A, McCall, LI, Bernatchez, JA, Ndao, M, Reed, SL and Rosenthal, PJ (2018) Cysteine proteases in protozoan parasites. PLoS Neglected Tropical Diseases 12, e0006512.
Soares, RP, Altoe, ECF, Ennes-Vidal, V, da Costa, SM, Rangel, EF, de Souza, NA, da Silva, VC, Volf, P and d'Avila-Levy, CM (2017) In vitro inhibition of Leishmania attachment to Sandfly Midguts and LL-5 Cells by Divalent Metal Chelators, Anti-gp63 and Phosphoglycans. Protist 168, 326334.
Uehara, LA, Moreira, OC, Oliveira, AC, Azambuja, P, Lima, AP, Britto, C, Santos, ALS, Branquinha, MH and d'Avila-Levy, CM (2012) Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Neglected Tropical Diseases 6, e1958.
Waleckx, E, Gourbiere, S and Dumonteil, E (2015) Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memorias do Instituto Oswaldo Cruz 110, 324338.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Rebello et al. supplementary material
Figure S1

 Unknown (243 KB)
243 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed