Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-18T22:02:25.342Z Has data issue: false hasContentIssue false

On the behaviour and sensory physiology of the house-fly larva, Musca domestica L. I. Feeding stage

Published online by Cambridge University Press:  06 April 2009

M. Hafez
Affiliation:
from the Zoological Laboratory, University of Cambridge

Extract

The reactions of the house-fly larva to four environmental factors, namely temperature, air humidity, smell and light have been studied in the Laboratory. It was hoped that the results would shed some light on the general behaviour of the larva in its normal habitat. A comprehension of this behaviour will assist in understanding the ecology of the species, and hence facilitate its control. In order to analyse the behaviour of the larva, its reactions (other than to light) were first studied in relation to one factor at a time. An attempt was then made to test experimentally its reactions to various combinations of factors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. R. & Mebz, A. R. (1929). Hygroscopicity of fertilizer materials and mixtures. J. Industr. Engng Chem. 21, 305–6.CrossRefGoogle Scholar
Bentley, E. W. (1944). The biology and behaviour of Ptinus tectus Boie (Coleoptera, Ptinidae). 5. Humidity reactions. J. Exp. Biol. 20, 152–8.CrossRefGoogle Scholar
Bolwig, N. (1946). Senses and sense organs of the anterior end of the house-fly larvae. Vidensk. Medd. naturh. Foren. 109, 82217.Google Scholar
Buxton, P. A. (1931). Measurement and control of atmospheric humidity in relation to entomological problems. Bull. Ent. Res. 22, 431–47.CrossRefGoogle Scholar
Buxton, P. A. & Mellanby, K. (1934). The measurement and control of humidity. Bull. Ent. Res. 25, 171–5.CrossRefGoogle Scholar
Crozieb, W. J. (19251928). The orientation of animals by opposed beams of light. J. Gen. Physiol. 8, 671–84.CrossRefGoogle Scholar
Deal, J. M. (1941). The temperature preferendum of certain insects. J. anim. Ecol. 10, 233356.CrossRefGoogle Scholar
Ellsworth, J. K. (1933). The photoreceptive organs of a flesh fly larva, Lucilia sericata Meigen. Ann. Ent. Soc. Amer. 26, 203–14.CrossRefGoogle Scholar
Fraenkel, G. S. & Gunn, D. L. (1940). The Orientation of Animals. Oxford.Google Scholar
Gunn, D. L. (1937). The humidity reactions of the woodlouse, Porcellio scaber (Latrielle). J. Exp. Biol. 14, 178–86.CrossRefGoogle Scholar
Gunn, D. L. & Cosway, C. A. (1938). The temperature and humidity relations of the cockroach. V. Humidity preference. J. Exp. Biol. 15, 5563.CrossRefGoogle Scholar
Gunn, D. L., Kennedy, J. S. & Pielou, D. P. (1937). Classification of taxes and kineses. Nature, Lond., 140, 1064.CrossRefGoogle Scholar
Gunn, D. L. & Pielou, D. P. (1940). The humidity behaviour of the mealworm beetle Tenebrio molitor L. III. The mechanism of the reaction. J. Exp. Biol. 17, 307–16.CrossRefGoogle Scholar
Hafez, M. (1939). Some ecological observations on the insect fauna of dung. Bull. Soc. Fouad I Entom. 23, 241–83.Google Scholar
Hafez, M. (1941). Investigations into the problem of fly control in Egypt. Bull. Soc. Fouad I Entom. 25, 99143.Google Scholar
Hafez, M. (1948). A simple method for breeding the house fly Musca domestica in the laboratory. Bull. Ent. Res. 39, 385–6.CrossRefGoogle ScholarPubMed
Hammer, O. (1941). Biological and ecological investigations on flies associated with pasturing cattle and their excrement. Vidensk. Medd. naturh. Foren. Kbh. 105, 5257.Google Scholar
Hartwell, R. A. (1924). A study of the olfactory sense of termites. Ann. Ent. Soc. Amer. 17, 131–62.CrossRefGoogle Scholar
Herms, W. B. (1911). The photic reactions of Sarco- phagid flies. J. Exp. Zool. 10, 127226.Google Scholar
Hewitt, C. G. (1914). The house fly (Musca domestica L.) Cambridge.Google Scholar
Holmes, S. J. (1905). The selection of random movements as a factor in phototaxis. J. Comp. Neurol. 15, 98, 112.Google Scholar
Keilin, D. (1915). Recherches sur les larves de Diptères cyclorrhaphes. Bull. sci. Fr. Belg. 49, 15198.Google Scholar
Kennedy, J. S. (1937). The humidity reactions of the African migratory locust, Locusta migratoria migra- torioides R. & F., Gregarious phase. J. Exp. Biol. 14, 187197.CrossRefGoogle Scholar
Larsen, E. B. (1943). Problems of heat death and heat injury—Experiments on some species of Diptera. D. K. danske vidensk. Selsk. Biol. Medd. 19, 152.Google Scholar
Lees, A. D. (1943). On the behaviour of wireworms of the genus Agriotes Esch. (Coleoptera-Elateridae). I. Reactions to humidity. J. Exp. Biol. 20, 4353.CrossRefGoogle Scholar
Lees, A. D. (1948). The sensory physiology of the sheep tick, Ixodes ricinus L. J. Exp. Biol. 25, 145207.CrossRefGoogle Scholar
Loeb, J.(1890). Der Heliotropismus der Thiere und seine Übereinstimmung mit dem Heliotropismus der Pflanzen. Würzburg.CrossRefGoogle Scholar
Loeb, J. (1905). Studies in General Physiology, 2 vols. Chicago.Google Scholar
Lörincz, F. & Makara, G. (1935). Observations and experiments on fly control and the biology of the house-fly. League Nat. Health Org. C.H. Hyg. rur. E.H. 5.Google Scholar
Lowne, B. T. (18901892). The blow-fly. Vol. I. London.Google Scholar
Mast, S. O. (1911). Light and the Behaviour of organisms. New York and London.CrossRefGoogle Scholar
Miller, D. F. (1929). Determining the effects of change in temperature upon the locomotor movements of fly larvae. J. Exp. Zool. 52, 293313.CrossRefGoogle Scholar
Mitchell, H. & Crozier, W. J. (19271928). Photic orientation by two point sources of light. J. Gen. Physiol. 11, 563–83.CrossRefGoogle Scholar
Necheles, H. (1925). Arch. Schiffs- u. Tropenhyg. 29, 288–91.Google Scholar
Patten, B. M. (1914). A quantitative determination of the orienting reactions of the blow fly larva, Calliphora erythrocephala. J. Exp. Zool. 17, 213–80.CrossRefGoogle Scholar
Pielou, D. P. (1940). The humidity behaviour of the mealworm beetle Tenebrio molitor L. II. The humidity receptors. J. Exp. Biol. 17, 295306.CrossRefGoogle Scholar
Pielou, D. P. & Gunn, D. L. (1940). The humidity behaviour of the mealworm beetle Tenebrio molitor L. I. The reactions to differences in humidity. J. Exp. Biol. 17, 286–94.CrossRefGoogle Scholar
Pouchet, G. (1872). De l'influence de la lumière sur les larves de Diptères privées d'organes exterieurs de la vision. Rev. Mag. Zool. 23, 110‐17, 129–38, 183–6, 225–31, 261–4 312–16.Google Scholar
Sweetman, H. L. (1933). Studies of chemical control of relative humidity in closed spaces. Ecology, 14, 40–5.CrossRefGoogle Scholar
Thomsen, E. & Thomsen, M. (1937). Über das Thermopraeferendum der Larven einiger Fliegenarten. Z. vergl. Physiol. 24, 343–80.CrossRefGoogle Scholar
Thomsen, M. (1938). Stuefluenog Stikfluen. Copenhagen.Google Scholar
Thomsen, M. & Hammer, O. (1936). The breeding media of some commonflies. Bull. Ent. Res. 27, 559–87.CrossRefGoogle Scholar
Thomson, R. C. M. (1938). The reactions of mosquitoes to temperature and humidity. Bull. Ent. Res. 29, 125–40.CrossRefGoogle Scholar
Viallanes, M. H. (1882). Recherches sur l'histologie des insectes. Ann. Sci. nat. Zool. 14, 1348.Google Scholar
Welsh, J. H. (1937). The chemoreceptors of certain dipterous larvae. Science, 85, 430–1.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1939). Principles of Insect Physiology. London: Methuen.Google Scholar
Wigglesworth, V. B. (1941). The sensory physiology of the human louse Pediculus humanus corporis De Geer (Anoplura). Parasitology, 33, 67109.CrossRefGoogle Scholar
Wigglesworth, V. B. & Gillett, J. D. (1934). The function of the antenna in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host. J. Exp. Biol. 11, 120–39.CrossRefGoogle Scholar
Wilson, R. E. (1921). Humidity control by means of sulphuric acid solutions with critical compilation of vapour pressure data. J. Industr. Engng Chem. 13, 326.CrossRefGoogle Scholar