Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T22:57:17.590Z Has data issue: false hasContentIssue false

A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA

Published online by Cambridge University Press:  16 April 2009

A. MARCILI
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil
L. LIMA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil
M. CAVAZZANA JR.
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil Faculdade de Medicina de Catanduva, Catanduva, São Paulo, SP, 15809-145, Brasil
A. C. V. JUNQUEIRA
Affiliation:
Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brasil
H. H. VELUDO
Affiliation:
Universidade Federal de Rondônia (UNIR), Porto Velho, RO, 78900-000, Brasil
F. MAIA DA SILVA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil
M. CAMPANER
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil
F. PAIVA
Affiliation:
Departamento de Parasitologia Veterinária, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brasil
V. L. B. NUNES
Affiliation:
Centro de Ciências Biológicas, Agrárias e da Saúde, Universidade para o Desenvolvimento do Estado e da Região do Pantanal (UNIDERP), Campo Grande, MS, 79003-010, Brasil
M. M. G. TEIXEIRA*
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, 05508-900, Brasil
*
*Corresponding author: Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brasil. Tel: +55 11 30917268. Fax: +55 11 30917417. E-mail: mmgteix@icb.usp.br

Summary

We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TCbat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded low parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype was found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Añez, N., Crisante, G. and Soriano, P. J. (2009). Trypanosoma cruzi congenital transmission in wild bats. Acta Tropica 109, 7880. doi:10.1016/j.actatropica.2008.08.009.CrossRefGoogle ScholarPubMed
Baker, J. R., Miles, M. A., Godfrey, D. G. and Barrett, T. V. (1978). Biochemical characterization of some species of Trypanosoma (Schizotrypanum) from bats (Microchiroptera). The American Journal of Tropical Medicine and Hygiene 27, 483491.CrossRefGoogle ScholarPubMed
Barnabé, C., Brisse, S. and Tibayrenc, M. (2003). Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b nucleotide sequence analyses. Infection, Genetics and Evolution 2, 201208. doi:10.1016/S1567-1348(02)00130-2.CrossRefGoogle ScholarPubMed
Barreto, M. P., Ribeiro, R. D. and Filho, F. F. (1974). Estudos sobre reservatórios e vetores silvestres do Trypanosoma cruzi. LVII. Infecção natural do Phyllostomus hastatus hastatus (Tallas, 1767) pelo T. cruzi. Revista Brasileira de Biologia 34, 615622.Google Scholar
Brisse, S., Henriksson, J., Barnabé, C., Douzery, E. J., Berkvens, D., Serrano, M., De Carvalho, M. R., Buck, G. A., Dujardin, J. C. and Tibayrenc, M. (2003). Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infection, Genetics and Evolution 2, 173183. doi:10.1016/S1567-1348(02)00097-7.CrossRefGoogle ScholarPubMed
Brisse, S., Verhoef, J. and Tibayrenc, M. (2001). Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. International Journal for Parasitology 31, 12181226. doi:10.1016/S0020-7519(01)00238-7.CrossRefGoogle ScholarPubMed
Cano, M. I., Gruber, A., Vazquez, M., Cortés, A., Levin, M. J., González, A., Degrave, W., Rondinelli, E., Zingales, B. and Ramirez, J. L. (1995). Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project. Molecular and Biochemical Parasitology 71, 273278. doi:10.1016/0166-6851(95)00066-A.CrossRefGoogle ScholarPubMed
Cavazzana, M., Marcili, A., Campaner, M., Veludo, H. H., Takata, C. S. A., Paiva, F., Takeda, G. F. and Teixeira, M. M. G. (2003). Biological and morphological characterization and phylogenetic relationship of bat trypanosomes. Revista do Instituto de Medicina Tropical de São Paulo 45, 163.Google Scholar
Eick, G. N., Jacobs, D. S. and Matthee, C. A. (2005). A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution 9, 18691886. doi:10.1093/molbev/msi180.CrossRefGoogle Scholar
Fabián, M. E. (1991). Contribuição ao estudo da infecção de morcegos por hemoflagelados do gênero Trypanosoma Gruby, 1843. Cadernos de Saúde Pública, Rio de Janeiro 7, 6981. doi:10.1590/S0102-311X1991000100006.CrossRefGoogle Scholar
Fernandes, O., Santos, S. S., Cupolillo, E., Mendonça, B., Derre, R., Junqueira, A. C. V., Santos, L. C., Sturm, N. R., Naiff, R. D., Barrett, T. V., Campbell, D. and Coura, J. R. (2001). A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 9799. doi:10.1016/S0035-9203(01)90350-5.CrossRefGoogle Scholar
Ferreira, R. C., De Souza, A. A., Freitas, R. A., Campaner, M., Takata, C. S. A., Barrett, T. V., Shaw, J. J. and Teixeira, M. M. G. (2008). A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in Brazilian Amazonia. Journal of Eukaryotic Microbiology 55, 527535. doi:10.1111/j.1550-7408.2008.00342.x.CrossRefGoogle Scholar
Funayama, G. K. and Barreto, M. P. (1973). Studies of wild reservoirs and vectors of Trypanosoma cruzi. LIV. Natural bat infection, Epitesicus brasiliensis brasiliensis (Desmarest, 1819) by T. cruzi. Revista Brasileira de Biologia 33, 439444.Google ScholarPubMed
Funayama, G. K. and Barretto, M. P. (1970 a). Estudo sobre reservatórios e vetores silvestres do Trypanosoma cruzi. XXXVIII. Infecção natural do morcego Desmodus rotundus rotundus (Geoffroy, 1810) pelo T. cruzi. Revista Brasileira de Biologia 30, 1319.Google Scholar
Funayama, G. K. and Barretto, M. P. (1970 b). Estudo sobre reservatórios e vetores silvestres do Trypanosoma cruzi. XLI. Infecção natural do morcego Tadarida laticaudata (Geoffroy, 1805) pelo T. cruzi. Revista Brasileira de Biologia 30, 439445.Google Scholar
Gaunt, M. and Miles, M. (2000). The ecotopes and evolution of triatomine bugs (triatominae) and their associated trypanosomes. Memórias do Instituto Oswaldo Cruz 95, 557565. doi:10.1590/S0074-02762000000400019.CrossRefGoogle ScholarPubMed
Gurgel-Gonçalves, R., Abad-Franch, F., Ferreira, J. B., Santana, D. B. and Cuba, C. A. (2008). Is Rhodnius prolixus (Triatominae) invading houses in central Brazil? Acta Tropica 107, 9098. doi:10.1016/j.actatropica.2008.04.020.CrossRefGoogle ScholarPubMed
Gürtler, R. E., Cecere, M. C., Lauricella, M. A., Cardinal, M. V., Kitron, U. and Cohen, J. E. (2007). Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology 134, 6982. doi:10.1017/S0031182006001259.CrossRefGoogle ScholarPubMed
Herrera, C., Bargues, M. D., Fajardo, A., Montilla, M., Triana, O., Vallejo, G. A. and Guhl, F. (2007). Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infection, Genetics and Evolution 7, 535539. doi:10.1016/j.meegid.2006.12.003.CrossRefGoogle ScholarPubMed
Lisboa, C. V., Pinho, A. P. S., Herrera, H., Gerhard, M., Cupolillo, E. and Jansen, A. M. (2008). Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil. Veterinary Parasitology 156, 314318. doi:10.1016/j.vetpar.2008.06.004.CrossRefGoogle ScholarPubMed
Maia da Silva, F., Marcili, A., Lima, L., Cavazzana, M. Jr., Ortiz, P. A., Campaner, M., Takeda, G. F., Paiva, F., Nunes, V. L. B., Camargo, E. P. and Teixeira, M. M. G. (2009) Trypanosoma rangeli isolates of bats from Central Brazil: genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Tropica 109, 199207. doi:1016/j.actatropica.2008.11.005.CrossRefGoogle ScholarPubMed
Maia da Silva, F., Naiff, R. D., Marcili, A., Gordo, M., D'Affonseca Neto, J. A., Naiff, M. F., Franco, A. M., Campaner, M., Valente, V., Valente, S. A., Camargo, E. P., Teixeira, M. M. G. and Miles, M. A. (2008). Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest. Acta Tropica 107, 168173. doi:10.1016/j.actatropica.2008.05.015.CrossRefGoogle Scholar
Maia da Silva, F., Junqueira, A. C., Campaner, M., Rodrigues, A. C., Crisante, G., Ramirez, L. E., Caballero, Z. C., Monteiro, F. A., Coura, J. R., Añez, N. and Teixeira, M. M. G. (2007). Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Molecular Ecology 16, 33613373. doi:10.1111/j.1365-294X.2007.03371.x.CrossRefGoogle ScholarPubMed
Maia da Silva, F., Noyes, H., Campaner, M., Junqueira, A. C., Coura, J. R., Añez, N., Shaw, J. J., Stevens, J. R. and Teixeira, M. M. G. (2004 b). Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitology 129, 549561. doi:10.1017/S0031182004005931.CrossRefGoogle Scholar
Maia da Silva, F., Rodrigues, A. C., Campaner, M., Takata, C. S., Brigido, M. C., Junqueira, A. C., Coura, J. R., Takeda, G. F., Shaw, J. J. and Teixeira, M. M. G. (2004 a). Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology 128, 283294. doi:10.1017/S0031182003004554.CrossRefGoogle Scholar
Machado, C. A. and Ayala, F. J. (2001). Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences, USA 19, 73967401. www.pnas.orgycgiydoiy10.1073ypnas.121187198.CrossRefGoogle Scholar
Marcili, A., Valente, V., Valente, A., Junqueira, A. C. V., Maia da Silva, F., Naiff, R., Campaner, M., Coura, J. R., Camargo, E. P., Miles, M. A. and Teixeira, M. M. G. (2009). Trypanosoma cruzi in Brazilian Amazonia: lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. International Journal for Parasitology 39, 615623. doi:10.1016/j.ijpara.2008.09.015.CrossRefGoogle ScholarPubMed
Marinkelle, C. J. (1976). Biology of the trypanosomes of bats. In Biology of the Kinetoplastida, Vol 1, (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 175216. Academic Press, London, UK.Google Scholar
Martins, L. P. A., Marcili, A., Castanho, R. E. P., Therezo, A. L. S., Oliveira, J. C. P., Suzuki, R. B., Teixeira, M. M. G., Rosa, J. A. and Sperança, M. A. (2008). Rural Triatoma rubrovaria from southern Brazil harbors Trypanosoma cruzi of lineage IIc. The American Journal of Tropical Medicine and Hygiene 79, 427434.CrossRefGoogle ScholarPubMed
Miles, M. A., Povoa, M., De Souza, A. A., Lainson, R., Shaw, J. J. and Ketteridge, D. S. (1981). Chagas disease in the Amazon Basin. II. The distribution of Trypanosoma cruzi zymodemes 1 and 3 in Pará State, north Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 667674. doi:10/1016/0035-9203(81)90145-0.CrossRefGoogle ScholarPubMed
Molyneux, D. H. (1991). Trypanosomes of bats. In Parasitic Protozoa, 2nd Edn, (ed. Kreier, J. P. and Baker, J. R.), pp. 195223. Academic Press, London, UK.Google Scholar
O'Connor, O., Bosseno, M. F., Barnabé, C., Douzery, E. J. and Brenière, S. F. (2007). Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infection, Genetics and Evolution 7, 587593. doi:10.1016/j.meegid.2007.05.003.CrossRefGoogle ScholarPubMed
Pinto, A. S. and da Costa Bento, D. N. (1986). Trypanosoma cruzi-like bloodstrean trypomastigotes in bats from the state Piaui northeasten. Revista da Sociedade Brasileira de Medicina Tropical 19, 3134.CrossRefGoogle Scholar
Poinar, G. Jr. (2005). Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae), and Trypanosoma antiquus sp. n. (Stercoraria: Trypanosomatidae), the first fossil evidence of a triatomine-trypanosomatid vector association. Vector – Borne and Zoonotic Disease 5, 7281. doi:10.1089/vbz.2005.5.72.CrossRefGoogle Scholar
Rodrigues, A. C., Paiva, F., Campaner, M., Stevens, J. R., Noyes, H. A. and Teixeira, M. M. G. (2006). Phylogeny of Trypanosoma (Megatrypanum) theileri and related trypanosomes reveals lineages of isolates associated with artiodactyl hosts diverging on SSU and ITS ribosomal sequences. Parasitology 132, 215224. doi:10.1017/S0031182005008929.CrossRefGoogle ScholarPubMed
Roellig, D. M., Brown, E. L., Barnabé, C., Tibayrenc, M., Steurer, F. J. and Yabsley, M. J. (2008). Molecular typing of Trypanosoma cruzi isolates, United States. Emerging Infectious Diseases 14, 11231125. doi:10.3201/eid1407.080175.CrossRefGoogle ScholarPubMed
Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. and Zingales, B. (1996). DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology 83, 141152. doi:10.1016/S0166-6851(96)02755-7.CrossRefGoogle ScholarPubMed
Spotorno, O. A. E., Córdova, L. and Solari, I. A. (2008). Differentiation of Trypanosoma cruzi I subgroups through characterization of cytochrome b gene sequences. Infection, Genetics and Evolution 8, 898900. doi:10.1016/j.meegid.2008.08.006.CrossRefGoogle Scholar
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 1, 26882690. doi:10.1093/bioinformatics/btl446.CrossRefGoogle Scholar
Steindel, M., Grisard, E. C., de Carvalho Pinto, C. J., Cordeiro, F. D., Ribeiro-Rodrigues, R. and Romanha, A. J. (1998). Characterization of trypanosomes from the subgenus Schizotrypanum isolated from bats, Eptesicus sp. (Chiroptera: Vespertilionidae), captured in Florianopolis, Santa Catarina State, Brazil. Journal of Parasitology 84, 601607.CrossRefGoogle ScholarPubMed
Stevens, J. R., Noyes, H. A., Dover, G. A. and Gibson, W. C. (1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107116. doi:10.1017/S0031182098003473.CrossRefGoogle ScholarPubMed
Sturm, N. R., Vargas, N. S., Westenberger, S. J., Zingales, B. and Campbell, D. A. (2003). Evidence for multiple hybrid groups in Trypanosoma cruzi. International Journal for Parasitology 33, 269279. doi:10.1016/S0020-7519(02)00264-3.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis using Parsimony (* and Other Methods). Version 4. Sinauer and Associates, Sunderland, MA, USA.Google Scholar
Teixeira, L. F., Gonçalves, A. M., Romanha, A. J., Steindel, M. and Pinto, A. S. (1993). Schizodeme and zymodeme analysis of trypanosomes of the subgenus Schizotrypanum from the bat. Parasitology Research 79, 497500.CrossRefGoogle ScholarPubMed
Thomas, M. E., Rasweiler, I. J. J. and D'Alessandro, A. (2007). Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats. Memórias do Instituto Oswaldo Cruz 102, 559565. doi:10.1590/S0074-02762007005000068.CrossRefGoogle ScholarPubMed
Yeo, M., Acosta, N., Llewellyn, M., Sánchez, H., Adamson, S., Miles, G. A., López, E., González, N., Patterson, J. S., Gaunt, M. W., de Arias, A. R. and Miles, M. A. (2005). Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. International Journal for Parasitology 35, 225233. doi:10.1016/j.ijpara.2004.10.024.CrossRefGoogle ScholarPubMed
Westenberger, S. J., Sturm, N. R. and Campbell, D. A. (2006). Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. International Journal for Parasitology 36, 337346. doi:10.1016/j.ijpara.2005.11.002.CrossRefGoogle ScholarPubMed
Westenberger, S. J., Barnabé, C., Campbell, D. A. and Sturn, N. R. (2005). Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171, 527543. doi:10.1534/genetics.104.038745.CrossRefGoogle ScholarPubMed