Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T18:30:12.203Z Has data issue: false hasContentIssue false

Naturally occurring immunoglobulin M antibodies: enhancement of phagocytic and microbicidal activities of human neutrophils against Toxoplasma gondii

Published online by Cambridge University Press:  06 April 2009

E. Konishi
Affiliation:
Department of Medical Zoology, Kobe University School of Medicine, Kobe 650, Japan
M. Nakao
Affiliation:
Department of Medical Zoology, Kobe University School of Medicine, Kobe 650, Japan

Extract

Naturally occurring immunoglobulin M antibodies to Toxoplasma gondii in human sera were examined for their ability to enhance toxoplasmacidal activities of human neutrophils to show a role of natural antibodies in immunity to the early stage of Toxoplasma infection in humans. Neutrophils were mixed with tachyzoites at a ratio of 1:5 in the presence or absence of antibodies and were cultured for 1–18 h for microscopical examination. The count of tachyzoites phagocytosed in 200 neutrophils within 1 h was significantly higher in the presence of sera with natural IgM antibody levels of > 0.8 than those of < 0.1, with 2.4- to 2.9-fold differences (P < 0.02). The total tachyzoite counts at 18 h decreased to 26–39% of those at 1 h in the presence of natural IgM antibody levels of > 0.8 (P < 0.01), while the counts at 1 h consistently increased by 18 h in the absence of natural IgM antibodies. These results indicate that relatively high levels of natural IgM antibodies enhanced phagocytic and microbicidal activities of neutrophils against Toxoplasma. The enhancement was dose dependent, and was also weaker than that obtained with the same dilution of sera from individuals with chronic or acute infections. Live and dead tachyzoite counts in infected neutrophils suggested a quicker effect of natural IgM antibodies than IgG antibodies elicited by infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, F. G., Barnett, E. V., Gentry, L. O. & Remington, J. S. (1971). False-positive anti-Toxoplasma fluorescent-antibody tests in patients with antinuclear antibodies. Applied Microbiology 22, 270–5.CrossRefGoogle ScholarPubMed
Camargo, M. E., Leser, P. G. & Rocca, A. (1972). Rheumatoid factors as a cause for false positive IgM anti-Toxoplasma fluorescent tests. A technique for specific results. Revista do Instituto de Medicina Tropical de São Paulo 14, 310–13.Google ScholarPubMed
Catterall, J. R., Sharma, S. D. & Remington, J. S. (1986). Oxygen-independent killing by alveolar macrophages. Journal of Experimental Medicine 163, 1113–31.CrossRefGoogle ScholarPubMed
De Meuter, F. & DeDecker, H. Decker, H. (1975). Indirect fluorescent antibody test in toxoplasmosis: advantage of the use of fluorescent anti-IgG conjugate. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 233, 421–30.Google ScholarPubMed
Desmonts, G., Baufine-Ducrocq, H., Couzineau, P. & Peloux, Y. (1974). Anticorps toxoplasmiques naturels. Nouvelle Presse Médicale 3, 1547–9.Google Scholar
Franco, E. L., Sulzer, A. J., Higby, R. W. & Peralta, J. M. (1980). Immunoglobulin G and M polar staining of Toxoplasma gondii in the indirect immunofluorescence test. Journal of Clinical Microbiology 12, 780–4.CrossRefGoogle Scholar
Fulton, J. D. (1965). Studies on agglutination of Toxoplasma gondii. Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 694704.CrossRefGoogle Scholar
Fulton, J. D. & Fulton, F. (1965). Complement-fixation tests in toxoplasmosis with purified antigen. Nature, London 205, 776–8.CrossRefGoogle Scholar
Fulton, J. D. & Turk, J. L. (1959). Direct agglutination test for Toxoplasma gondii. Lancet 2, 1068–9.CrossRefGoogle ScholarPubMed
Gussetti, N., D'Elia, R., Rigoli, E. & Mottola, A. (1990). Natural immunoglobulin M antibodies against Toxoplasma gondii during pregnancy. American Journal of Obstetrics and Gynecology 162, 1360.CrossRefGoogle ScholarPubMed
Hino, S. (1977). Staining of blood cells. Medical Technology 5, 1116–20. (In Japanese.)Google Scholar
Hobbs, K. M., Sole, E. & Bettelheim, K. A. (1977). Investigation into the immunoglobulin class responsible for the polar staining of Toxoplasma gondii in the fluorescent antibody test. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 239, 409–13.Google ScholarPubMed
Konishi, E. (1987). A pregnant woman with a high level of naturally occurring immunoglobulin M antibodies to Toxoplasma gondii. American Journal of Obstetrics and Gynecology 157, 832–3.CrossRefGoogle ScholarPubMed
Konishi, E. (1990). Age-dependent, naturally occurring immunoglobulin M antibody levels to Toxoplasma gondii in a human population. Japanese Journal of Parasitology 39, 628–30.Google Scholar
Konishi, E. (1991). Naturally occurring immunoglobulin M antibodies to Toxoplasma gondii in Japanese populations. Parasitology 102, 157–62.CrossRefGoogle ScholarPubMed
Konishi, E. & Takahashi, J. (1983). Reproducible enzyme-linked immunosorbent assay with a magnetic processing system for diagnosis of toxoplasmosis. Journal of Clinical Microbiology 17, 225–31.CrossRefGoogle ScholarPubMed
Konishi, E. & Takahashi, J. (1987). Some epidemiological aspects of Toxoplasma infections in a population of farmers in Japan. International Journal of Epidemiology 16, 277–81.CrossRefGoogle Scholar
Mcleod, R., Estes, R., Mack, D. G. & Mcleod, E. G. (1983). Effects of human alveolar macrophages and peripheral blood monocytes on Toxoplasma gondii. Journal of Infectious Diseases 147, 957.CrossRefGoogle ScholarPubMed
Murray, H. W. & Cohn, Z. A. (1979). Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates. Journal of Experimental Medicine 150, 938–49.CrossRefGoogle ScholarPubMed
Nakao, M. & Konishi, E. (1991). Proliferation of Toxoplasma gondii in human neutrophils in vitro. Parasitology 103, 23–7.CrossRefGoogle ScholarPubMed
Nakao, M. & Matsumura, T. (1991). An ultrastructural study on human neutrophil activity against Toxoplasma gondii. Japanese Journal of Parasitology 40, 92–8.Google Scholar
Naot, Y., Barnett, E. V. & Remington, J. S. (1981). Method for avoiding false-positive results occurring in immunoglobulin M enzyme-linked immunosorbent assays due to presence of both rheumatoid factor and antinuclear antibodies. Journal of Clinical Microbiology 14, 73–8.CrossRefGoogle ScholarPubMed
Potasman, I., Araujo, F. G. & Remington, J. S. (1986). Toxoplasma antigens recognized by naturally occurring human antibodies. Journal of Clinical Microbiology 24, 1050–4.CrossRefGoogle ScholarPubMed
Sibley, D. L., Krahenbuhl, J. L. & Weidner, E. (1985). Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii. Infection and Immunity 49, 760–4.CrossRefGoogle ScholarPubMed
Sulzer, A. J. & Hall, E. C. (1967). Indirect fluorescent antibody tests for parasitic diseases. IV. Statistical study of variation in the indirect fluorescent antibody (IFA) test for toxoplasmosis. American Journal of Epidemiology 86, 401–7.CrossRefGoogle ScholarPubMed
Sulzer, A. J., Wilson, M. & Hall, E. C. (1971). Toxoplasma gondii: polar staining in fluorescent antibody test. Experimental Parasitology 29, 197200.CrossRefGoogle ScholarPubMed
Van Renterghem, L. & Van Nimmen, L. (1976). Indirect immunofluoresence in toxoplasmosis: frequency, nature and specificity of polar staining. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 235, 559–65.Google Scholar