Skip to main content Accessibility help

Molecular phylogeny based on six nuclear genes suggests that Echinococcus granulosus sensu lato genotypes G6/G7 and G8/G10 can be regarded as two distinct species

  • Teivi Laurimäe (a1), Liina Kinkar (a1), Epp Moks (a1), Thomas Romig (a2), Rihab A. Omer (a3), Adriano Casulli (a4) (a5), Gérald Umhang (a6), Guna Bagrade (a7), Malik Irshadullah (a8), Mitra Sharbatkhori (a9), Hossein Mirhendi (a10), Francisco Ponce-Gordo (a11), Silvia V. Soriano (a12), Antonio Varcasia (a13), Mohammad Rostami-Nejad (a14), Vanessa Andresiuk (a15) and Urmas Saarma (a1)...


Tapeworms of the species complex of Echinococcus granulosus sensu lato (s. l.) are the cause of a severe zoonotic disease – cystic echinococcosis, which is listed among the most severe parasitic diseases in humans and is prioritized by the World Health Organization. A stable taxonomy of E. granulosus s. l. is essential to the medical and veterinary communities for accurate and effective communication of the role of different species in this complex on human and animal health. E. granulosus s. l. displays high genetic diversity and has been divided into different species and genotypes. Despite several decades of research, the taxonomy of E. granulosus s. l. has remained controversial, especially the species status of genotypes G6–G10. Here the Bayesian phylogeny based on six nuclear loci (7387 bp in total) demonstrated, with very high support, the clustering of G6/G7 and G8/G10 into two separate clades. According to the evolutionary species concept, G6/G7 and G8/G10 can be regarded as two distinct species. Species differentiation can be attributed to the association with distinct host species, largely separate geographical distribution and low level of cross-fertilization. These factors have limited the gene flow between genotypic groups G6/G7 and G8/G10, resulting in the formation of distinct species. We discuss ecological and epidemiological differences that support the validity of these species.


Corresponding author

Author for correspondence: Urmas Saarma, E-mail:


Hide All
Abbott, R et al. (2013) Hybridization and speciation. Journal of Evolutionary Biology 26, 229246.
Addy, F et al. (2017) Genetic differentiation of the G6/7 cluster of Echinococcus canadensis based on mitochondrial marker genes. International Journal for Parasitology 47, 923931.
Alvarez Rojas, CA, Romig, T and Lightowlers, MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans – review of current knowledge. International Journal for Parasitology 44, 918.
Andresiuk, MV et al. (2013) Echinococcus granulosus genotype G1 dominated in cattle and sheep during 2003–2006 in Buenos Aires province, an endemic area for cystic echinococcosis in Argentina. Acta Tropica 127, 136142.
Arnold, M (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology 13, 9971007.
Boubaker, G et al. (2013) A multiplex PCR for the simultaneous detection and genotyping of the Echinococcus granulosus complex. PLoS Neglected Tropical Diseases 7(1), e2017.
Bowles, J, Blair, D and McManus, DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.
Bowles, J, Blair, D and McManus, DP (1994) Molecular genetic characterization of the cervid strain (‘northern form’) of Echinococcus granulosus. Parasitology 109, 215221.
Cardona, GA and Carmena, D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Veterinary Parasitology 192, 1032.
Casulli, A et al. (2012) Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infection, Genetics and Evolution 12, 377383.
Craig, PS et al. (2017) Echinococcosis: control and prevention. Advances in Parasitology 96, 55158.
Darriba, D et al. (2012) Jmodeltest 2: more models, new heuristics and parallel computing. Nature Methods 9(8), 772.
Detwiler, JT and Criscione, CD (2010) An infectious topic in reticulate evolution: introgression and hybridization in animal parasites. Genes 210, 102123.
Drummond, AJ et al. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.
Guindon, S and Gascuel, O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696704.
Haag, KL et al. (2011) Reappraising the theme of breeding systems in Echinococcus: is outcrossing a rare phenomenon? Parasitology 138, 298302.
Hall, TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.
Heled, J and Drummond, AJ (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27(3), 570580.
Hindrikson, M et al. (2012) Bucking the trend in wolf-dog hybridization: first evidence from Europe of hybridization between female dogs and male wolves. PLoS ONE 7(10), e46465.
Hindrikson, M et al. (2017) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biological Reviews 92, 16011629.
Hüttner, M et al. (2008) Genetic characterization and phylogenetic position of Echinococcus felidis Ortlepp, 1937 (Cestoda: Taeniidae) from the African lion. International Journal for Parasitology 38, 861868.
King, KC et al. (2015) Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS Pathogens 11(9), e1005098.
Kinkar, L et al. (2016) High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain. Parasitology 143, 17901801.
Kinkar, L et al. (2017) New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infection, Genetics and Evolution 52, 5258.
Kinkar, L et al. (2018 a) Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. International Journal for Parasitology, in press.
Kinkar, L et al. (2018 b) Genetic diversity and phylogeography of the elusive, but epidemiologically important Echinococcus granulosus sensu stricto genotype G3. Parasitology.
Knapp, J et al. (2011) Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 61, 628638.
Knapp, J et al. (2015) Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: from fundamental knowledge to health ecology. Veterinary Parasitology 213, 8591.
Konyaev, SV et al. (2013) Genetic diversity of Echinococcus spp. in Russia. Parasitology 140, 16371647.
Laurimaa, L et al. (2015 a) First report of highly pathogenic Echinococcus granulosus genotype G1 in European Union urban environment. Parasites and Vectors 8, 182.
Laurimaa, L et al. (2015 b) Noninvasive detection of Echinococcus multilocularis tapeworm in urban area, Estonia. Emerging Infectious Diseases 21, 163164.
Laurimäe, T et al. (2016) Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279 bp of mtDNA. Infection, Genetics and Evolution 45, 290296.
Lavikainen, A et al. (2003) Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127, 207215.
Lavikainen, A et al. (2006) Molecular characterization of echinococcus isolates of cervid origin from Finland and Sweden. Parasitology 133, 565570.
Leonard, JA et al. (2014) Impact of hybridization on the conservation of wild canids. In Gompper, ME (ed.), Free Ranging Dogs and Wildlife Conservation. Oxford: Oxford University Press, pp. 170184.
Lopez-Neyra, CR and Soler Planas, MA (1943) Revision del genero Echinococcus Rud y descripcion de una especie nueva pararita intestinal del perro en Almeria. Revista ibérica de parasitología 3, 169194, (in Spanish).
Lymbery, AJ (2017) Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus. Advances in Parasitology 95, 111145.
Lymbery, AJ et al. (2015) Echinococcus canadensis, E. borealis, and E. intermedius. What's in a name? Trends in Parasitology 31, 2329.
Marcinkute, A et al. (2015) Echinococcus infections in the Baltic region. Veterinary Parasitology 213, 121131.
Moks, E et al. (2006) Helminthologic survey of the wolf (Canis lupus) in Estonia, with an emphasis on Echinococcus granulosus. Journal of Wildlife Diseases 42, 359365.
Moks, E et al. (2008) First report of Echinococcus granulosus G8 in Eurasia and a reappraisal of the phylogenetic relationships of ‘genotypes’ G5–G10. Parasitology 135, 647654.
Moro, PL et al. (2009) Molecular identification of Echinococcus isolates from Peru. Parasitology International 58, 184186.
Nakao, M, Lavikainen, A and Hoberg, E (2015) Is Echinococcus intermedius a valid species? Trends in Parasitology 31, 342343.
Nakao, M et al. (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134, 713722.
Nakao, M et al. (2013) Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology 140, 16251636.
Okamoto, M et al. (2010) Evidence of hybridization between Taenia saginata and Taenia asiatica. Parasitology International 59, 7074.
Oksanen, A and Lavikainen, A (2015) Echinococcus canadensis transmission in the North. Veterinary Parasitology 213, 182186.
Romig, T, Ebi, D and Wassermann, M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Veterinary Parasitology 231, 7684.
Romig, T et al. (2017) Ecology and life cycle patterns of Echinococcus species. Advances in Parasitology 95, 213314.
Saarma, U et al. (2009) A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 136, 317328.
Schurer, JM et al. (2014) Echinococcus multilocularis and Echinococcus canadensis in wolves from western Canada. Parasitology 141, 159163.
Simsek, S, Kaplan, M and Ozercan, IH (2011) A comprehensive molecular survey of Echinococcus granulosus in formalin-fixed paraffin-embedded tissues in human isolates in Turkey. Parasitology Research 109, 411416.
Šnabel, V et al. (2009) Cystic echinococcosis in Turkey: genetic variability and first record of the pig strain (G7) in the country. Parasitology Research 105, 145154.
Soriano, SV et al. (2010) Molecular characterization of Echinoccocus isolates indicates goats as reservoir for Echinococcus canadensis G6 genotype in Neuquen, Patagonia Argentina. Parasitology International 59, 626628.
Soriano, SV et al. (2016) First study about the development of adult Echinococcus canadensis G6 genotype of goat origin in experimentally infected dogs. Veterinary Parasitology 228, 612.
Thompson, RCA (2008) The taxonomy, phylogeny and transmission of Echinococcus. Experimental Parasitology 119, 439446.
Thompson, RCA (2017) Biology and systematics of Echinococcus. Advances in Parasitology 95, 65109.
Thompson, RCA and McManus, DP (2002) Towards a taxonomic revision of the genus Echinococcus. Trends in Parasitology 18, 452457.
Thompson, RCA et al. (2006) Molecular and morphological characterization of Echinococcus in cervids from North America. Parasitology 132, 439447.
Varcasia, A et al. (2006) Molecular characterization of Echinococcus granulosus strains in Sardinia. Parasitology Research 98, 273277.
Varcasia, A et al. (2007) Molecular characterization of Echinococcus granulosus in sheep and goats of Peloponnesus, Greece. Parasitology Research 101, 11351139.
Wassermann, M et al. (2016) A novel zoonotic genotype related to Echinococcus granulosus sensu stricto from southern Ethiopia. International Journal for Parasitology 46, 663668.
WHO (2017). Echinococcosis. Fact Sheet (Updated March 2017). World Health Organization. Available at (last accessed 12.12.2017).
Yamane, K et al. (2013) Genotypic relationships between Taenia saginata, Taenia asiatica and their hybrids. Parasitology 140, 15951601.
Yanagida, T et al. (2017) Specific status of Echinococcus canadensis (Cestoda: Taeniidae) inferred from nuclear and mitochondrial gene sequences. International Journal for Parasitology 47, 971979.


Type Description Title
Supplementary materials

Laurimäe et al. supplementary material
Figures S1-S3

 PDF (102 KB)
102 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed