Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:18:45.853Z Has data issue: false hasContentIssue false

Molecular forms of tegumental and muscle acetylcholinesterases of Schistosoma

Published online by Cambridge University Press:  26 March 2010

M. Camacho
Affiliation:
Department of Biology, Imperial College of Science, Technology and Medicine, London, SW7 2BB
S. Alsford
Affiliation:
Department of Biology, Imperial College of Science, Technology and Medicine, London, SW7 2BB
A. Agnew
Affiliation:
Department of Biology, Imperial College of Science, Technology and Medicine, London, SW7 2BB

Summary

Acetylcholinesterase (ACHE) is present in the muscle and on the tegument of schistosomes. Molecular forms of schistosome AChE were examined because particular AChEs are found in tissues of distinct function elsewhere. The dimeric globular form (G2) is the only form evident in adult Schistosoma haematobium: 32 % of the muscle AChE is hydrophilic and 61 % is membrane associated. A substantial amount of this enzyme is phosphatidylinositol (PI) anchored since it could be released by PI-specific phospholipase C from both muscle and tegumental membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arpagaus, M., Richier, P., L'Hermite, Y., Le Roy, F., Berge, J., Thierry-Mieg, D. & Toutant, J.-P. (1992). Nematode acetylcholinesterases: several genes and molecular forms of their products. In Multidisciplinary Approaches to Cholinesterase Functions (ed. Shafferman, A. & Velan, B. ), pp. 6574. New York: Plenum Press.CrossRefGoogle Scholar
Bennekou, P. (1993). The voltage-gated non-selective cation channel from human red cells is sensitive to acetylcholine. Biochimica et Biophysica Acta 1147, 165–7.CrossRefGoogle ScholarPubMed
Bon, S., Toutant, J.-P., Meflah, K. & Massoulie, J. (1988). Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: II. Electrophoresis variants and phosphatidylinositol phospholipid C-sensitive and -insensitive forms. Journal of Neurochemistry 51, 786–94.CrossRefGoogle ScholarPubMed
Bueding, E. (1952). Acetylcholinesterase activity of Schistosoma mansoni. British Journal of Pharmacology 7, 563–6.Google ScholarPubMed
Camacho, M., Tarrab-Hazdai, R., Espinoza, B., Arnon, R. & Agnew, A. (1994). The amount of acetylcholinesterase on the parasite surface reflects the differential sensitivity of schistosome species to metrifonate. Parasitology 108, 153–60.CrossRefGoogle ScholarPubMed
Camacho, M., Alsford, S., Jones, A. & Agnew, A. (1995). Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Molecular and Biochemical Parasitology 71, 127–34.CrossRefGoogle ScholarPubMed
Doctor, B. P., Toker, L., Roth, E. & Silman, I. (1987). Microtiter assay for acetylcholinesterase. Analytical Biochemistry 166, 399403.CrossRefGoogle ScholarPubMed
Espinoza, B., Tarrab-Hazdai, R., Silman, I. & Arnon, R. (1988). Acetylcholinesterase in Schistosoma mansoni is anchored to the membrane via covalently attached phosphatidylinositol. Molecular and Biochemical Parasitology 29, 171–9.CrossRefGoogle Scholar
Espinoza, B., Tarrab-Hazdai, R.Silman, I. & Arnon, R. (1991). Phosphatidylinositol-specific phospholipase C induces biosynthesis of acetylcholinesterase via diaglycerol in Schistosoma mansoni. European Journal of Biochemistry 195, 863–70.CrossRefGoogle Scholar
Fripp, P. (1967). Histochemical localisation of esterase activity in Schistosomes. Experimental Parasitology 21, 380–90.CrossRefGoogle ScholarPubMed
Goldlust, A., Arnon, R., Silman, I. & Tarrab-Hazdai, R. (1986). Acetylcholinesterase of Schistosoma mansoni: Purification and characterisation. Journal of Neuroscience Research 15, 569–81.CrossRefGoogle Scholar
Hawn, T. R. & Strand, M. (1993). Detection and partial characterization of glycosylphosphatidylinositol-specific phosphohpase activities from Fasciola hepatica and Schistosoma mansoni. Molecular and Biochemical Parasitology 59, 7384.CrossRefGoogle ScholarPubMed
Huestis, W. & Mcconnell, H. (1974). A functional acetylcholine receptor in the human erythrocyte. Biochemical and Biophysical Research Communications 57, 726–33.CrossRefGoogle ScholarPubMed
Inestrosa, N. & Perelman, A. (1990). Association of acetylcholinesterase with the cell surface. Journal of Membrane Biology 118, 19.CrossRefGoogle ScholarPubMed
Johnson, C. D. & Russell, R. L. (1975). A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Analytical Biochemistry 64, 229–38.CrossRefGoogle ScholarPubMed
Kawashima, K., Oohata, H., Fujimoto, K. & Suzuki, T. (1987). Plasma concentration of acetylcholine in young women. Neuroscience Letters 80, 339–42.CrossRefGoogle ScholarPubMed
Levi-Schaffer, F., Tarrab-Hazdai, R., Schryer, M., Arnon, R. & Smolarsky, M. (1984). Isolation and partial characterisation of the tegument outer membrane of schistosomula of Schistosoma mansoni. Molecular and Biochemical Parasitology 13, 283300.CrossRefGoogle ScholarPubMed
Massoulie, J. & Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual Review of Neuroscience 5, 57106.CrossRefGoogle ScholarPubMed
Massoulie, J., Pezzementi, L., Bon, S., Krejci, E. & Vallette, F. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41, 3191.CrossRefGoogle ScholarPubMed
Opperman, C. H. A Chang, S. (1992). Nematodeacetylcholinesterases: molecular forms and their potential role in nematode behaviour. Parasitology Today 8, 406–11.CrossRefGoogle Scholar
Pax, R., Siefker, C. & Bennett, J. (1984). Schistosoma mansoni: differences in acetylcholine, dopamine and serotonin control of circular and longitudinal parasite muscles. Experimental Parasitology 58, 314–24.CrossRefGoogle ScholarPubMed
Pritchard, D. I., Brown, A. & Toutant, J.-P. (1994). The molecular forms of acetylcholinesterase from Necator americanus (Nematoda) a hookworm parasite of the human intestine. European Journal of Biochemistry 219, 317–23.CrossRefGoogle ScholarPubMed
Richman, D. & Arnason, B. (1979). Nicotink acetylcholine receptor: Evidence for a functionally distinct receptor on human lymphocytes. Proceedings of the National Academy of Sciences, USA 76, 4632–5.CrossRefGoogle ScholarPubMed
Silman, I. & Futerman, A. (1987). Modes of attachment of acetylcholinesterase to the surface membrane. Comparative Biochemistry and Immunology 170, 1122.Google Scholar
Simpson, A. J. C., Schryer, M. D., Cesari, I. M., Evans, W. H. & Smithers, S. R. (1981). Isolation and partial purification of the tegumental outer membrane of adult Schistosoma mansoni. Parasitology 83, 163–77.CrossRefGoogle Scholar
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Tarrab-Hazdai, R., Levi-Schaffer, F., Gonzalez, G. & Arnon, R. (1984). Acetylcholinesterase of Schistosoma mansoni molecular forms of the solubilised enzyme. Biochimica et Biophysica Acta 790, 61–9.CrossRefGoogle ScholarPubMed