Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T15:44:44.154Z Has data issue: false hasContentIssue false

Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance

Published online by Cambridge University Press:  21 July 2010

BAOZHEN CHEN
Affiliation:
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
ALEX DEUTMEYER
Affiliation:
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
JOHN CARR
Affiliation:
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
ALAN P. ROBERTSON
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
RICHARD J. MARTIN*
Affiliation:
Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
SANTOSH PANDEY
Affiliation:
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
*
*Corresponding author: Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA. Tel: +515 294 2470. Fax: +515 294 3637. E-mail: rjmartin@iastate.edu

Summary

With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 μm, which was larger than 123 μm of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 μm, which was less than 393 μm of LEVR. The mean propagation velocity of SENS, 149 μm s−1, was similar to LEVR, 143 μm s−1. The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0·5 μm. The EC50 for SENS was 3 μm and the EC50 for LEVR was 10 μm. This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albonico, M., Wright, V., Ramsan, M., Haji, H. J., Taylor, M., Savioli, L. and Bickle, Q. (2005). Development of the egg hatch assay for detection of anthelmintic resistance in human hookworms. International Journal for Parasitology 35, 803811.CrossRefGoogle ScholarPubMed
Chronis, N., Zimmer, M. and Bargmann, C. I. (2007). Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nature Methods 4, 727731.CrossRefGoogle ScholarPubMed
Cronin, C. J., Mendel, J. E., Mukhtar, S., Kim, Y. M., Stirbl, R. C., Bruck, J. and Sternberg, P. W. (2005). An automated system for measuring parameters of nematode sinusoidal movement. BMC Genetics 6, 16.CrossRefGoogle ScholarPubMed
De Baere, S., Cherlet, M., Croubels, S., Baert, K. and De Backer, P. (2003). Liquid chromatographic determination of levamisole in animal plasma: ultraviolet versus tandem mass spectrometric detection. Analytical Chimica Acta 483, 214224.CrossRefGoogle Scholar
Diawara, A., Drake, L. J., Suswillo, R. R., Kihara, J., Bundy, D. A. P., Scott, M. E., Halpenny, C., Stothart, J. R. and Pritchard, R. K. (2009). Assays to detect beta-tubulin codon 200 polymorphism in Trichuris trichiura and Ascaris lumbricoides. PLoS Neglected Tropical Diseases 3, e397.CrossRefGoogle ScholarPubMed
Feng, Z., Cronin, C. J., Wittig, J. H., Sternberg, P. W. and Schafer, W. R. (2004). An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5, 115.CrossRefGoogle ScholarPubMed
Guest, M., Bull, K., Walker, R. J., Amliwala, K., O'Connor, V., Harder, A., Holden-dye, L. and Hopper, N. A. (2007). The calcium-activated channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. International Journal for Parasitology 37, 15771588.CrossRefGoogle ScholarPubMed
Gray, J. (1953). Undulatory propulsion. Quarterly Journal of Microscopical Science 94, 551578.Google Scholar
Gray, J. and Lissmann, H. W. (1964). The locomotion of nematodes. Journal of Experimental Biology 41, 135154.CrossRefGoogle ScholarPubMed
Gray, J. M., Hill, J. J. and Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 102, 31843191.CrossRefGoogle ScholarPubMed
Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A. and Bargmann, C. I. (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, London 430, 317322.CrossRefGoogle Scholar
Heng, X., Erickson, D., Baugh, L. R., Yaqoob, Z., Sternberg, P. W., Psaltis, D. and Yang, C. (2006). Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip. Lab Chip 6, 12741276.CrossRefGoogle ScholarPubMed
Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P. and Allbritton, N. (2002). Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry 74, 41174123.CrossRefGoogle ScholarPubMed
Hulme, S. E., Shevkoplyas, S. S., Apfeld, J., Fontana, W. and Whitesides, G. M. (2007). A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7, 15151523.CrossRefGoogle ScholarPubMed
Johnson, N. M., Behm, C. A. and Trowell, S. C. (2005). Heritable and inducible gene knockdown in C. elegans using Wormgate and the ORFeome. Gene 359, 2634.CrossRefGoogle Scholar
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R. Y. and Schafer, W. R. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583594.CrossRefGoogle ScholarPubMed
Kotze, A. C., Clifford, S., O'Grady, J., Behnke, J. M. and McCarthy, J. S. (2004). An in vitro larval motility assay to determine anthelmintic sensitivity for human hookworm and Strongyloides species. American Journal of Tropical Medicine and Hygiene 71, 608616.CrossRefGoogle Scholar
Lockery, S. R., Lawton, K. J., Doll, J. C., Faumont, S. and Coulthard, S. M. (2008). Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. Journal of Neurophysiology 99, 31363143.CrossRefGoogle ScholarPubMed
Martin, R. J. (1982). Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. British Journal of Pharmacology 77, 255265.CrossRefGoogle ScholarPubMed
Martin, R. J. (1997). Modes of action of anthelmintic drugs. Veterinary Journal 154, 1134.CrossRefGoogle ScholarPubMed
Martin, R. J., Bai, G., Clark, C. L. and Robertson, A. L. (2003). Methyridine (2-[2-methoxyethyl]-pyridine]) and levamisole activate different ACh receptor subtypes in nematode parasites: a new lead for levamisole-resistance. British Journal of Pharmacology 140, 10681076.CrossRefGoogle Scholar
McNeal, R. (2002). Locomotion. The Biology of Nematodes (ed. Lee, , , D. L.), pp. 345352. Taylor and Francis, London, UK. 345.Google Scholar
Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E. and Gottschalk, A. (2005). Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Current Biology 15, 22792284.CrossRefGoogle ScholarPubMed
Pierce-Shimomura, J. T., Morse, T. M. and Lockery, S. R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. Journal of Neuroscience 19, 95579569.CrossRefGoogle ScholarPubMed
Qin, J. and Wheeler, A. R. (2007). Maze exploration and learning in C. elegans. Lab Chip 7, 186192.CrossRefGoogle ScholarPubMed
Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M. and Yanik, M. F. (2007). Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proceedings of the National Academy of Sciences, USA 104, 1389113895.CrossRefGoogle ScholarPubMed
Ryu, W. S. and Samuel, A. D. (2002). Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. Journal of Neuroscience 22, 57275733.CrossRefGoogle ScholarPubMed
Sia, S. K. and Whitesides, G. M. (2003). Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 35633576.CrossRefGoogle ScholarPubMed
Schwenkenbecher, J. M., Albonico, M., Bickle, Q. and Kaplan, R. M. (2007). Characterization of beta-tubulin genes in hookworms and investigation of resistance-associated mutations using real-time PCR. Molecular and Biochemical Parasitology 156, 167174.CrossRefGoogle ScholarPubMed
Whitesides, G. M. (2006). The origins and future of microfluidics. Nature, London 442, 368373.CrossRefGoogle ScholarPubMed
Wolstenholme, A. J. and Rogers, A. T. (2005). Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131, S85S95.CrossRefGoogle ScholarPubMed
Zhang, Y., Lu, H. and Bargmann, C. I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, London 438, 179184.CrossRefGoogle ScholarPubMed