Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T08:59:18.963Z Has data issue: false hasContentIssue false

The metabolic fate of ivermectin in host (Ovis aries) and parasite (Haemonchus contortus)

Published online by Cambridge University Press:  22 October 2012

IVAN VOKŘÁL
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
VERONIKA JEDLIČKOVÁ
Affiliation:
Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-53210 Pardubice, Czech Republic
ROBERT JIRÁSKO
Affiliation:
Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-53210 Pardubice, Czech Republic
LUCIE STUCHLÍKOVÁ
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
HANA BÁRTÍKOVÁ
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
LENKA SKÁLOVÁ
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
JIŘÍ LAMKA
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
MICHAL HOLČAPEK
Affiliation:
Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-53210 Pardubice, Czech Republic
BARBORA SZOTÁKOVÁ*
Affiliation:
Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic
*
*Corresponding author: Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic. Tel: +420 495 067 324. Fax: +420 495 067 168. E-mail: Barbora.Szotakova@faf.cuni.cz

Summary

Ivermectin (IVE), one of the most important anthelmintics, is often used in the treatment of haemonchosis in ruminants. The objective of our work was (1) to find and identify phase I and II metabolites of IVE formed by the Barber's pole worm (Haemonchus contortus), and (2) to compare IVE metabolites in helminths with IVE biotransformation in sheep (Ovis aries) as host species. Ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) was used for this purpose. During in vitro incubations, microsomes (from adult worms or from ovine liver) and a primary culture of ovine hepatocytes were incubated with IVE. In the ex vivo study, living H. contortus adults were incubated in the presence of 1 μM IVE for 24 h. The results showed that the H. contortus enzymatic system is not able to metabolize IVE. On the other hand, 7 different phase I as well as 9 phase II IVE metabolites were detected in ovine samples using UHPLC/MS/MS analyses. Most of these metabolites have not been described before. Haemonchus contortus is not able to deactivate IVE through biotransformation; therefore, biotransformation does not contribute to the development of IVE-resistance in the Barber's pole worm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L. I., Solana, H. D., Mottier, M. L., Virkel, G. L., Fairweather, I. and Lanusse, C. E. (2005). Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 131, 501510. doi: 10.1017/S0031182005007997.CrossRefGoogle ScholarPubMed
Alvinerie, M., Dupuy, J., Eeckhoutte, C., Sutra, J. F. and Kerboeuf, D. (2001). In vitro metabolism of moxidectin in Haemonchus contortus adult stages. Parasitology Research 87, 702704. doi: 10.1007/s004360100408.CrossRefGoogle ScholarPubMed
Baliharová, V., Velík, J., Šavlík, M., Szotáková, B., Lamka, J., Tahotná, L. and Skálová, L. (2004). The effects of fenbendazole, flubendazole and mebendazole on activities of hepatic cytochromes P450 in pig. Journal of Veterinary Pharmacology and Therapeutics 27, 8590. doi: 10.1111/j.1365-2885.2004.00557.x.CrossRefGoogle ScholarPubMed
Berry, M. N., Edwards, A. M. and Barritt, G. J. (1991). Isolated hepatocytes preparation, properties and applications. In Laboratory Techniques in Biochemistry and Molecular Biology (ed. Burdow, R. H. and van Knippenberg, P. H.), pp. 1535. Elsevier Science, Amsterdam, The Netherlands.Google Scholar
Chiu, S. L., Sestokas, E., Taub, R., Smith, J. L., Arison, B. and Lu, A. Y. H. (1984). The metabolism of avermectin H2B1a and H2B1b by pig liver microsomes. Drug Metabolism and Disposition 12, 464469.Google Scholar
Chiu, S. H., Sestokas, E., Taub, R., Buhs, R. P., Green, M., Sestokas, R., Vandenheuvel, W. J., Arison, B. H. and Jacob, T. A. (1986) Metabolic disposition of ivermectin in tissues of cattle, sheep, and rats. Drug Metabolism and Disposition 14, 590600.Google ScholarPubMed
Cvilink, V., Kubíček, V., Nobilis, M., Křížová, V., Szotáková, B., Lamka, J., Várady, M., Kuběnová, M., Novotná, R., Gavelová, M. and Skálová, L. (2008 a). Biotransformation of flubendazole and selected model xenobiotics in Haemonchus contortus. Veterinary Parasitology 151, 242248. doi: 10.1016/j.vetpar.2007.10.010.CrossRefGoogle ScholarPubMed
Cvilink, V., Lamka, J. and Skálová, L. (2009 a). Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metabolism Reviews 41, 826. doi: 10.1080/03602530802602880.CrossRefGoogle ScholarPubMed
Cvilink, V., Skálová, L., Szotáková, B., Lamka, J., Kostiainen, R. and Ketola, R. A. (2008 b). LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Analytical and Bioanalytical Chemistry 391, 337343. doi: 10.1007/s00216-008-1863-9.CrossRefGoogle ScholarPubMed
Cvilink, V., Szotáková, B., Křížová, V., Lamka, J. and Skálová, L. (2009 b). Phase I biotransformation of albendazole in lancet fluke (Dicrocoelium dendriticum). Research in Veterinary Science 86, 4955. doi: 10.1016/j.rvsc.2008.05.006.CrossRefGoogle ScholarPubMed
Devine, C., Brennan, G. P., Lanusse, C. E., Alvarez, L. I., Trudgett, A., Hoey, E. and Fairweather, I. (2010 a). Potentiation of triclabendazole sulphoxide-induced tegumental disruption by methimazole in a triclabendazole-resistant isolate of Fasciola hepatica. Parasitology Research 106, 13511363. doi: 10.1007/s00436-010-1806-1.CrossRefGoogle Scholar
Devine, C., Brennan, G. P., Lanusse, C. E., Alvarez, L. I., Trudgett, A., Hoey, E. and Fairweather, I. (2010 b). Enhancement of the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica using the metabolic inhibitor ketoconazole. Parasitology Research 107, 337353. doi: 10.1007/s00436-010-1866-2.CrossRefGoogle ScholarPubMed
Getachew, T., Dorchies, P. and Jacquiet, P. (2007). Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. Parasite 14, 314.CrossRefGoogle ScholarPubMed
González Canga, A., Sahagún Prieto, A. M., Diez Liébana, J. M., Martínez, N. F., Vega, M. S. and Vieitez, J. J. (2009). The pharmacokinetics and metabolism of ivermectin in domestic animal species. Veterinary Journal 179, 2537. doi: 10.1016/j.tvjl.2007.07.011.CrossRefGoogle ScholarPubMed
Holčapek, M., Jirásko, R. and Lísa, M. (2010). Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. Journal of Chromatography A 1217, 39083921. doi: 10.1016/j.chroma.2010.02.049.CrossRefGoogle ScholarPubMed
Holčapek, M., Kolářová, L. and Nobilis, M. (2008). High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Analytical and Bioanalytical Chemistry 391, 5978. doi: 10.1007/s00216-008-1962-7.CrossRefGoogle ScholarPubMed
James, C. E., Hudson, A. L. and Davey, M. W. (2009). Drug resistance mechanisms in helminths: is it survival of the fittest? Trends in Parasitology 25, 328335. doi: 10.1016/j.pt.2009.04.004.CrossRefGoogle ScholarPubMed
Jirásko, R., Holčapek, M., Vrublová, E., Ulrichová, J. and Šimánek, V. (2010). Identification of new phase II metabolites of xanthohumol in rat in vivo biotransformation of hop extracts using high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography A 48, 41004108. doi: 10.1016/j.chroma.2010.02.041.CrossRefGoogle Scholar
Kotze, A. C. and McClure, S. J. (2001). Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. International Journal for Parasitology 31, 15631571. doi: 10.1016/S0020-7519(01)00303-4.CrossRefGoogle ScholarPubMed
Miwa, G. T., Walsh, J. S., Van den Heuvel, W. J. A., Arison, B., Sestokas, E., Buhs, R., Rosegay, A., Lu, A. Y. H., Walsh, M. A. R., Taub, R. and Jacoby, T. A. (1982). The metabolism of avermectins B1a, H2B1a and H2B1b by liver microsomes. Drug Metabolism and Disposition 10, 268274.Google Scholar
Mottier, L., Virkel, G., Solana, H., Alvarez, L., Salles, J. and Lanusse, C. (2004). Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 34, 10431057. doi: 10.1080/00498250400015285.CrossRefGoogle ScholarPubMed
Robinson, M. W., Lawson, J., Trudgett, A., Hoey, E. M. and Fairweather, I. (2004). The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research 92, 205210. doi: 10.1007/s00436-003-1003-6.CrossRefGoogle ScholarPubMed
Roos, M. H., Otsen, M., Hoekstra, R., Veenstra, J. G. and Lenstra, J. A. (2004). Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. International Journal for Parasitology 34, 109115. doi: 10.1016/j.ijpara.2003.10.002.CrossRefGoogle ScholarPubMed
Rothwell, J. and Sangster, N. (1997). Haemonchus contortus: the uptake and metabolism of closantel. International Journal for Parasitology 27, 313319. doi: 10.1016/S0020-7519(96)00200-7.CrossRefGoogle ScholarPubMed
Solana, H. D., Rodriguez, J. A. and Lanusse, C. E. (2001). Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitology Research 87, 275280. doi: 10.1007/PL00008578.CrossRefGoogle ScholarPubMed
Van Wyk, J. A., Gerber, H. M. and Groeneveld, H. T. (1980). A technique for recovery of nematodes from ruminants by migration from gastro-intestinal ingesta gelled in agar: large-scale application. Onderstepoort Journal of Veterinary Research 47, 147158.Google ScholarPubMed
Wolstenholme, A. J., Fairweather, I, Prichard, R., von Samson-Himmelstjerna, G. and Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476. doi: 10.1016/j.pt.2004.07.010.CrossRefGoogle ScholarPubMed
Zeng, Z., Andrew, N. W., Arison, B. H., Luffer-Atlas, D. and Wang, R. W. (1998). Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes. Xenobiotica 28, 313321. doi: 10.1080/004982598239597.CrossRefGoogle Scholar