Skip to main content Accessibility help
×
Home

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus

  • ANA PAULA DE SOUZA STORI DE LARA (a1), LUCAS BIGOLIN LORENZON (a2), ANA MUÑOZ VIANNA (a3), FRANCISCO DENIS SOUZA SANTOS (a4), LUCIANO SILVA PINTO (a3), MARIA ELISABETH AIRES BERNE (a1) and FÁBIO PEREIRA LEIVAS LEITE (a3)...

Summary

Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g−1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL−1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

Copyright

Corresponding author

* Corresponding author: Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Caixa, Postal 354, CEP: 96010900, Pelotas, RS, Brazil. E-mail: fabio_leite@ufpel.edu.br; fabio@leivasleite.com.br

References

Hide All
Barger, I. A. (1999). The role of epidemiological Knowledge and grazing management for helminth control in small ruminants. International Journal for Parasitology 29, 4150.
Betz, F. S., Hammond, B. G. and Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology 32, 156173.
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1988). Factores affecting the larvicidal activity of Bacillus thuringiensis israelensis toxin for Tricostrongylus colubriformis (Nematoda). Journal of Invertebrate Pathology 52, 102107.
Bravo, A., Gill, S. S. and Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423435.
Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberón, M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41, 423431.
Capello, M., Bungiro, R. D., Harrison, L. M., Bischof, L. J., Griffitts, J. S., Barrows, B. D. and Aroian, R. V. (2006). A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum . Proceedings of the National Academy of Sciences of the United States of America 103, 1515415159.
Cezar, A. S., Toscan, G., Camillo, G., Sangioni, L. A., Ribas, H. O. and Vogel, F. S. F. (2010). Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Veterinary Parasitology 173, 157160.
Chandrawathani, P., Jamnah, O., Waller, P. J., Höglund, J., Larsen, M. and Zahari, W. M. (2002). Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on Duddingtonia flagrans . Veterinary Research 33, 685696.
Coles, G. C., Bauer, C., Borgsteede, F. H., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. J. (1992). World Association for Advancement of Veterinary Parasitology (WAAVP) Methods for detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3543.
de Maadg, R. A., Bravo, A., Berry, C., Crick more, N. and Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entopathogenic bacteria. Annual Review of Genetics 37, 409433.
Gasser, R. B., Bott, N. J., Chilton, N. B., Hunt, P. and Beveridge, I. (2008). Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock-bionomic and biotechnological implications. Biotechnology Advances 26, 325334.
Geary, T. G., Woo, K., McCarthy, J. S., Mackenzie, C. D., Horton, J., Prichard, R. K., de Silva, N. R., Olliaro, P. L., Lazdins-Helds, J. K., Engels, D. A. and Bundy, D. A. (2010). Unresolved issues in anthelmintic pharmacology for helminthiases of humans. International Journal for Parasitology 40, 113.
Gordon, H. M. and Whitlock, H. V. (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the Council Scientific and Industrial Research 12, 5052.
Hasshoff, M., Böhnisch, C., Tonn, D., Hasert, B. and Schulenburg, H. (2007). The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis . The Official Journal of the Federation of American Societies for Experimental Biology 21, 18011812.
Höss, S., Menzel, R., Gessler, F., Nguyen, H. T., Jehle, J. A. and Traunspurger, W. (2013). Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans . Environmental Pollution 178, 147–15.
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.
Kotze, A. C., O`Grady, J., Gough, J. M., Pearson, R., Bagnall, N. H., Kemp, D. H. and Akhurst, R. J. (2005). Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. International Journal for Parasitology 35, 10131022.
Lee, D. H., Machi, J. and Ohba, M. (2002). High frequency of Bacillus thuringiensis in feces of herbivorous animals maintained in a zoological garden in Japan. Applied Entomology and Zoology 37, 509516.
Marroquin, L. D., Elyassnia, D., Griffits, J. S., Feiltelson, J. S. and Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans . Genetics 155, 16931699.
Medeiros, A. E., Ramos, Z. and Banchero, G. E. (2014). First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites & Vectors 7, 598.
O'Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology 142, 115.
Pardo-López, L., Soberón, M. and Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews 37, 322.
Roberts, F. H. S. and O'Sullivan, P. J. (1950). Methods for counts and larval cultures for Strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning – A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998). Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiology and Molecular Biology Reviews 62, 775806.
Schulenburg, H. and Ewbank, J. J. (2007). The genetics of pathogen avoidance in Caenorhabditis elegans . Molecular Microbiology 66, 563570.
Siegel, J. P. (2001). The mammalian safety of Bacillus thuringiensis – based insecticides. Journal of Invertebrate Pathology 77, 1321.
Silva, M. E., Braga, F. R., de Gives, P. M., Millán-Orozco, J., Uriostegui, M. A., Marcelino, L. A., Soares, F. E., Araújo, A. L., Vargas, T. S., Aguiar, A. R., Senna, T., Rodrigues, M. G., Froes, F. V. and de Araújo, J. V. (2015). Fungal antagonism assessment of predatory species and producers metabolites and their effectiveness on Haemonchus contortus infective larvae. BioMed Research International 2015, 241582.
Sinott, M. C., Cunha Filho, N. A., Castro, L. L. D., Lorenzon, L. B., Pinto, N. B., Capella, G. A. and Leite, F. P. L. (2012). Bacillus spp. toxicity against Haemonchus contortus larvae in sheep fecal cultures. Experimental Parasitology 132, 103108.
Sinott, M. C., Dias de Castro, L. L., Leite, F. L. L., Gallina, T., De-Souza, M. T., Santos, D. F. L. and Leite, F. P. L. (2014). Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep. Journal of Helminthology 90, 6873.
Soberón, M. and Bravo, A. (2007). Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación. Biotecnologia 14, 303313.
Soberón, M., López-Díaz, J. A. and Bravo, A. (2013). Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganism. Peptides 41, 8793.
Ueno, H., Gonçalves, P. C. (1998). Manual para Diagnóstico das Helmintoses de Ruminantes, 4th Edn. Japan international Cooperation Agency, Tokyo, Japan.
Van den Brom, R., Moll, L., Kappert, C. and Vellema, P. (2015). Haemonchus contortus resistance to monepantel in sheep. Veterinary Parasitology 209, 278280.
Van Wyk, J. A., Stenson, M. O., Van der Merwe, J. S., Vorster, R. J. and Viljoen, P. G. (1999). Anthelmintic resistance in South Africa: surveys indicate an extremely serious situation in sheep and goat farming. Onderstepoort Journal Veterinary Research 66, 273284.
Wei, J. Z., Hale, K., Carla, L., Platzer, E., Wong, C., Fang, S. C. and Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America 100, 27602765.
Yousten, A. A. (1984). Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Advances in Biotechnology Processes 3, 315343.
Zhang, Y., Lu, H. and Bargmann, C. L. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans . Nature 438, 179184.

Keywords

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus

  • ANA PAULA DE SOUZA STORI DE LARA (a1), LUCAS BIGOLIN LORENZON (a2), ANA MUÑOZ VIANNA (a3), FRANCISCO DENIS SOUZA SANTOS (a4), LUCIANO SILVA PINTO (a3), MARIA ELISABETH AIRES BERNE (a1) and FÁBIO PEREIRA LEIVAS LEITE (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed