Skip to main content Accessibility help
×
Home

Initiation of chemical studies on the immunoreactive glycolipids of adult Ascaris suum

  • R. D. Dennis (a1), S. Baumeister (a1), C. Smuda (a1), C. Lochnit (a2), T. Waider (a1) and E. Geyer (a1)...

Summary

There is a general lack of basic information concerning one class of glycoconjugate, the glycolipids, from parasitic nematodes. As the prototype, the neutral glycolipid fraction derived from adult males of Ascaris suum was investigated as to its chromatographic, differential chemical staining, antigenic and chemical properties. The thin-layer chromato-graphy-resolved neutral fraction glycolipids could be classified into components of fast and slow migrating band groups. Immunoreactivity was restricted to the latter as detected by IgG and IgM anti-neutral fraction glycolipid antibody levels in serial infection sera of mice. Similarities of chromatography, antigenicity and serological cross-reactivity have been extended to the neutral glycolipid fractions of other parasitic nematodes: Litomosoides carinii and Nippostrongylus brasiliensis. Chemical, differential chemical staining and enzymatic analyses identified the Ascaris suum antigenic, slow migrating band group of components as amphoteric glycosphingolipids, and not the originally hypothesized glyco-glycerolipids or glycosylphosphatidylinositols, that contained typical neutral monosaccharide constituents and a zwitter-ionic phosphodiester linkage, most probably phosphocholine. Glycosphingolipid-immunoreactivity is eliminated on cleavage of the zwitterionic phosphodiester linkage by hydrofluoric acid treatment.

Copyright

References

Hide All
Baumeister, S., Dennis, R. D., Klünder, R., Schares, G., Zahner, H. & Geyer, E. (1994). Litomosoides carinii: macrofilariae-derived glycolipids – chromatography, serology and potential in the evaluation of anthelminhic efficacy. Parasite Immunology 16, 629–41.
Baumeister, S., Dennis, R. D., Kunz, J., Wiegandt, H. & Geyer, E. (1992). Comparative serological reactivity of Taenia crassiceps, Taenia solium and Taenia saginata metacestode neutral glycolipids to infection serum from Taenia crassiceps-infected mice. Molecular and Biochemical Parasitology 53, 5362.
Blaxter, M. L., Page, A. P., Rudin, W. & Maizels, R. M. (1992). Nematode surface coats: actively evading immunity. Parasitology Today 8, 243–7.
Cuellar, C., Fenoy, S. & Guillen, J. L. (1992). Cross-reactions of sera from Toxocara cams-infected mice with Toxascaris leonina and Ascaris suum antigens. International Journal for Parasitology 22, 301–7.
Dennis, R. D., Baumeister, S., Geyer, R., Peter-Katalinic, J., Hartmann, R., Egge, H., Geyer, E. & Wiegandt, H. (1992). Glycosphingolipids in cestodes. Chemical structures of ceramide monosaccharide, disaccharide, trisaccharide and tetrasaccharide from metacestodes of the fox tapeworm, Taenia crassiceps (Cestoda: Cyclophyllidea). European Journal of Biochemistry 207, 1053–62.
Dennis, R. D., Geyer, R., Egge, H., Menges, H., Stirm, S. & Wiegandt, H. (1985 a). Glycosphingolipids in insects. Chemical structures of ceramide monosaccharide, disaccharide and trisaccharide from pupae of Calliphora vicina (Insecta: Diptera). European Journal of Biochemistry 146, 51–8.
Dennis, R. D., Geyer, R., Egge, H., Peter-Katalinic, J., Li, S.-C., Stirm, S. & Wiegandt, H. (1985 b). Glycosphingolipids in insects. Chemical structures of ceramide tetra-, penta-, hexa-, and heptasaccharides from Calliphora vicina pupae (Insecta: Diptera). Journal of Biological Chemistry 260, 5370–5.
Dennis, R. D. & Wiegandt, H. (1993). Glycosphingolipids of the Invertebrata as exemplified by a cestode platyhelminth, Taenia crassiceps, and a dipteran insect, Calliphora vicina. In Advances in Lipid Research, Vol. 26, Sphingolipids in Signaling, Part B (ed. Bell, R. M., Hannun, Y. A. & Merrill, A. H.), pp. 321351. Orlando: Academic Press.
Ferguson, M. A. J. (1992 a). Glycosyl-phosphatidylinositol membrane anchors: the tale of a tail. Biochemical Society Transactions 20, 243–56.
Ferguson, M. A. J. (1992 b). Chemical and enzymic analysis of glycosyl-phosphatidylinositol anchors. In Lipid Modification of Proteins. A Practical Approach (ed. Hooper, N. M. & Turner, A. J.), pp. 191230. Oxford: IRL Press.
Forsyth, K. P., Spark, R., Kazura, J., Brown, G. V., Peters, P., Heywood, P., Dissanayake, S. & Mitchell, G. F. (1985). A monoclonal antibody-based immunoradiometric assay for detection of circulating antigen in bancroftian filariasis. Journal of Immunology 134, 1172–7.
Gerold, P., Dieckmann-Schuppert, A. & Schwarz, R. T. (1994). Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. Journal of Biological Chemistry 269, 2597–606.
Grelck, H., Hörchner, F. & Unterholzner, J. (1981). Zur serologischen Differenzierung von Ascaris suum-und Toxocara canis-infektionen beim Schwein. Zeitschrift für Parasitenkunde 65, 277–82.
Hardy, M. R. (1989). Monosaccharide analysis of glycoconjugates by high-performance anion-exchange chromatography with pulsed amperometric detection. Methods in Enzymology 179, 7682.
Hardy, M. R., Townsend, R. R. & Lee, Y. C. (1988). Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Analytical Biochemistry 170, 5462.
Harnett, W., Houston, K. M., Amess, R. & Worms, M. J. (1993). Acanthocheilonema viteae; phosphorylcholine is attached to the major excretory–secretory product via an N-linked glycan. Experimental Parasitology 77, 498502.
Helling, F., Dennis, R. D., Weske, B., Nores, G., Peter-Katalinic, J., Dabrowski, U., Egge, H. & Wiegandt, H. (1991). Glycosphingolipids in insects. The amphoteric moiety, N-acetylglucosamine-linked phospho-ethanolamine, distinguishes a group of ceramide oligosaccharides from the pupae of Calliphora vicina (Insecta: Diptera). European Journal of Biochemistry 200, 409–21.
Hori, T. & Sugita, M. (1993). Sphingolipids in lower animals. Progress in Lipid Research 32, 2545.
Ito, M. & Yamagata, T. (1989 a). Endoglycoceramidase from Rhodococcus species G-74–2. Methods in Enzymology 179, 488–96.
Ito, M. & Yamagata, T. (1989 b). Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Journal of Biological Chemistry 264, 9510–19.
Jenkins, D. c. (1968). Observations on the early migration of larvae of Ascaris suum Goeze, 1782, in white mice. Parasitology 58, 431–40.
Kang, S., Cummings, R. D. & McCall, J. W. (1993). Characterization of the N-linked oligosaccharides in glycoproteins synthesized by microfilariae of Dirofilaria immitis. Journal of Parasitology 79, 815–28.
Khoo, K. H., Maizels, R. M., Page, A. P., Taylor, G. W., Rendell, N. B. & Dell, A. (1991). Characterization of nematode glycoproteins: the major O-glycans of Toxocara canis excretory-secretory antigens are O-methylated trisaccharides. Glycobiology 1, 163–71.
Lal, R. B., Kumaraswami, V., Steel, C. & Nutman, T. B. (1990). Phosphocholine-containing antigens of Brugia malayi nonspecifically suppress lymphocyte function. American Journal of Tropical Medicine and Hygiene 42, 5664.
Levery, S. B., Weiss, J. B., Salyan, M. E., Roberts, C. E., Hakomori, S., Magnani, J. L. & Strand, M. (1992). Characterization of a series of novel fucose-containing glycosphingolipid immunogens from eggs of Schistosoma mansoni. Journal of Biological Chemistry 267, 5542–51.
Maizels, R. M., Denham, D. A. & Sutanto, I. (1985). Secreted and circulating antigens of the filarial parasite Brugia malayi: analysis of in vitro released components and detection of parasite products in vivo. Molecular and Biochemical Parasitology 17, 277–88.
Maizels, R. M., Kennedy, M. W., Meghji, M., Robertson, B. D. & Smith, H. v. (1987). Shared carbohydrate epitopes on distinct surface and secreted antigens of the parasitic nematode Toxocara canis. Journal of Immunology 139, 207–14.
Mayor, S. & Menon, A. K. (1990). Structural analysis of the glycosylinositol phospholipid anchors of membrane proteins. Methods 1, 297305.
Mitchell, G. F., Hogarth-Scott, R. S., Edwards, R. D., Lewers, H. M., Cousins, G. & Moore, T. (1976). Studies on immune responses to parasite antigens in mice. I Ascaris suum larvae numbers and antiphosphorylcholine responses in infected mice of various strains and in hypothymic nu/nu mice. International Archives of Allergy and Applied Immunology 52, 6478.
Noda, N., Tanaka, R., Miyahara, K. & Kawasaki, T. (1992). Two novel galactosylceramides from Marphysa sanguinea. Tetrahedron Letters 33, 7527–30.
Noda, N., Tanaka, R., Miyahara, K. & Kawasaki, T. (1993 a). Three glycosphingolipids having the phosphocholine group from the crude drug ‘jiryu’ (the earthworm, Pheretima asisatica). Chemical and Pharmaceutical Bulletin 41, 1733–7.
Noda, N., Tanaka, R., Miyahara, K. & Kawasaki, T. (1993 b). Isolation and characterization of a novel type of glycosphingolipid from Neanthes diversicolor. Biochimica et Biophysica Acta 1169, 30–8.
Page, A. P., Hamilton, A. J. & Maizels, A. M. (1992). Toxocara cants: monoclonal antibodies to carbohydrate epitopes of secreted (TES) antigens localize to different secretion-related structures in infective larvae. Experimental Parasitology 75, 5671.
Page, A. P., Rudin, W., Fluri, E., Blaxter, M. L. & Maizels, R. M. (1992). Toxocara canis: a labile antigenic surface coat overlying the epicuticle of infective larvae. Experimental Parasitology 75, 7286.
Persat, F., Bouhours, J. F., Mojon, M. & Petavy, A. F. (1992). Glycosphingolipids with Galβ1–6Gal sequences in metacestodes of the parasite Echinococcus multilocularis. Journal of Biological Chemistry 267, 8764–9.
Pery, P., Petit, A., Poulain, J. & Luffau, G. (1974). Phosphorylcholine-bearing components in homogenates of nematodes. European Journal of Immunology 4, 637–9.
Politz, S. M. & Philipp, M. (1992). Caenorhabditis elegans as a model for parasitic nematodes: a focus on the cuticle. Parasitology Today 8, 612.
Pritchard, D. I., Quinnell, R. J., Mckean, P. G., Walsh, L., Leggett, K. V., Slater, A. F. G., Raiko, A., Dale, D. D. s. & Keymer, A. E. (1991). Antigenic cross-reactivity between Necator americanus and Ascaris lumbricoides in a community in Papua New Guinea infected predominantly with hookworm. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 511–14.
Saito, T. & Hakomori, S. (1971). Quantitative isolation of total glycosphingolipids from animal cells. Journal of Lipid Research 12, 257–9.
Skipski, V. P. & Barclay, M. (1969). Thin-layer chromatography of lipids. Methods in Enzymology 14, 530–98.
Stadler, J., Keenan, T., Bauer, G. & Gerisch, G. (1989). The contact site A glycoprotein of Dictyostelium discoideum carries a phospholipid anchor of a novel type. EMBO Journal 8, 371–7.
Sugita, M., Fujii, H., Inagaki, F., Suzuki, M., Hayata, C. & Hori, T. (1992). Polar glycosphingolipids in Annelida. A novel series of glycosphingolipids containing choline phosphate from the earthworm, Pheretima hilgendorfi. Journal of Biological Chemistry 267, 22595–8.
Turner, A. P., Brown, D., Heasman, J., Cook, G. M. W., Evans, J., Vickers, L. & Wylie, C. C. (1992). Involvement of a neutral glycolipid in differential cell adhesion in the Xenopus blastula. EMBO Journal 11, 3845–55.
Williams, M. A. & McCluer, R. H. (1980). The Use of Sep-Pak™ C18 cartridges during the isolation of gangliosides. Journal of Neurochemistry 35, 266–9.

Keywords

Initiation of chemical studies on the immunoreactive glycolipids of adult Ascaris suum

  • R. D. Dennis (a1), S. Baumeister (a1), C. Smuda (a1), C. Lochnit (a2), T. Waider (a1) and E. Geyer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed