Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T02:23:10.309Z Has data issue: false hasContentIssue false

Immunochemical analysis of Taenia taeniaeformis antigens expressed in Escherichia coli

Published online by Cambridge University Press:  06 April 2009

D. D. L. Bowtell
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, AU
R. B. Saint
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, AU
M. D. Rickard
Affiliation:
University of Melbourne, Veterinary Clinical Centre, Werribee, AU
G. F. Mitchell
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, AU

Summary

Previously we reported the isolation of several Escherichia coli clones expressing fragments of Taenia taeniaeformis antigens as β-galactosidase fused proteins (Bowtell, Saint, Rickard & Mitchell, 1984). Here we describe the isolation of additional antigen-expressing clones from a larval cDNA library and the assignment of these clones to 7 antigen families. These were isolated with a polyspecific rabbit antiserum raised to the oncosphere. Since this serum was capable of reacting with a large number of antigens, it was important to develop techniques for rapidly determining the identity of the native T. taeniaeformis molecule corresponding to a cloned antigen gene. These included active immunization of rabbits with fused proteins and several techniques involving affinity purification on immobilized fused proteins. The reactivity of the antigen-positive clones with sera from humans infected with related parasites was also assessed. Finally, immunization of mice with several fused proteins failed to protect against subsequent infection, although antigens previously identified as candidate host-protective antigens (Bowtell, Mitchell, Anders, Lightowlers & Rickard, 1983) have yet to be identified in the expression library.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. F., Coppel, R. L., Brown, G. V., Saint, R. B., Cowman, A. F., Lingelbach, K. R., Mitchell, G. F. & Kemp, D. J. (1984). Plasmodium falciparum cDNA clones expressed in Escherichia coli encode many distinctive antigens. Molecular Biology in Medicine 2, 177–92.Google Scholar
Bowtell, D. D. L., Mitchell, G. F., Anders, R. F., Lightowlers, M. W. & Rickard, M. D. (1983). Taenia taeniaeformis: Immunoprecipitation analysis of the protein antigens of oncospheres and larvae. Experimental Parasitology 56, 417–27.CrossRefGoogle ScholarPubMed
Bowtell, D. D. L., Saint, R. B., Rickard, M. D. & Mitchell, G. F. (1984). Expression of Taenia taeniaeformis antigens in Escherichia coli. Molecular and Biochemical Parasitology 13, 173–85.CrossRefGoogle ScholarPubMed
Coppel, R. L., Cowman, A. F., Anders, R. F., Bianco, A. E., Saint, R. B., Lingelbach, K. R., Kemp, D. J. & Brown, G. V. (1984). Immune sera recognize on erythrocytes a Plasmodium falciparum antigen composed of repeated amino acid sequences. Nature, London 310, 789–91.CrossRefGoogle ScholarPubMed
Gill, A. C. (1986). Characteristics of a vaccine strain of Babesia bovis. Ph.D. thesis, University of Melbourne.Google Scholar
Grunstein, M. & Hogness, D. (1975). Colony hybridization. A method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Science, USA 72, 3961–5.CrossRefGoogle ScholarPubMed
Guerra, G., Flisser, A., Canedo, L. & Laclette, J. (1982). Biochemical and immunochemical characterization of antigen B purified from cysticerci of Taenia solium. In Cysticercosis: Present State of Knowledge and Perspectives, pp. 437–51. London: Academic Press.Google Scholar
Johnston, D. A., Gautsch, J. W., Sportsman, J. R. & Elder, J. H. (1984). Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analytical Technology 1, 38.CrossRefGoogle Scholar
Kemp, D. J., Coppel, R. L., Cowman, A. F., Saint, R. B., Brown, G. V. & Anders, R. F. (1983). Expression of Plasmodium falciparum blood-stage antigens in Escherichia coli: detection with antibodies from immune humans. Proceedings of the National Academy of Sciences, USA 80, 3787–91.CrossRefGoogle ScholarPubMed
Kemp, D. J., Coppel, R. L., Stahl, H. D., Bianco, A. E., Corcoran, L. M., McIntyre, P., Langford, C. J., Favaloro, J. M., Crewther, P. E., Brown, G. V., Mitchell, G. F. & Anders, R. F. (1986). Genes for antigens of Plasmodium falciparum. In Parasites and Molecular Biology: Applications of New Techniques. Symposia of the British Society for Parasitology, vol. 23 (ed. Simpson, A. J. G.). Parasitology 92, S83–S108.Google Scholar
Mitchell, G. F., Rajasekariah, G. R. & Rickard, M. D. (1980). A mechanism to account for mouse strain variation in resistance to the larval cestode, Taenia taeniaeformis. Immunology 39, 481–9.Google Scholar
Potter, K. & Leid, R. W. (1986). Isolation and partial characterization of an eosinophil chemotactic factor from metacestode of Taenia taeniaeformis (ECF-Tt). Journal of Immunology 136, 16.Google ScholarPubMed
Pozzuoli, R., Piantelli, M., Perucci, C., Arru, E. & Musiani, P. (1975). Isolation of the most immunoreactive antigens of Echinococcus granulosus from sheep hydatid fluid. Journal of Immunology 115, 1459–63.CrossRefGoogle ScholarPubMed
Saint, R. B., Beall, J. A., Grumont, R. J., Mitchell, G. F. & Garcia, E. G. (1986). Expression of Schistosoma japonicum antigens in Escherichia coli. Molecular and Biochemical Parasitology 18, (in the press).CrossRefGoogle ScholarPubMed
Young, R. A. & Davis, R. W. (1983). Efficient isolation of genes by antibody probes. Proceedings of the National Academy of Sciences, USA 80, 1194–8.CrossRefGoogle ScholarPubMed
Young, R. A. & Davis, R. W. (1984). Yeast RNA polymerase II genes: Isolation with antibody probes. Science 222, 778–82.CrossRefGoogle Scholar