Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T10:11:22.145Z Has data issue: false hasContentIssue false

High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain

Published online by Cambridge University Press:  30 August 2016

LIINA KINKAR
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia
TEIVI LAURIMÄE
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia
SAMI SIMSEK
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Turkey
IBRAHIM BALKAYA
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey
ADRIANO CASULLI
Affiliation:
European Reference Laboratory for Parasites, Department of Infectious Diseases, Intituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
MARIA TERESA MANFREDI
Affiliation:
Department of Veterinary Sciences and Public Health, University of Milan via Celoria 10, 20133 Milano, Italy
FRANCISCO PONCE-GORDO
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramóny Cajal s/n, 28040 Madrid, Spain
ANTONIO VARCASIA
Affiliation:
Laboratorio di Parassitologia, Ospedale Didattico Veterinario, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
ANTTI LAVIKAINEN
Affiliation:
Department of Bacteriology and Immunology/Immunobiology Program, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014, Finland
LUIS MIGUEL GONZÁLEZ
Affiliation:
Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
STEFFEN REHBEIN
Affiliation:
Merial GmbH, Kathrinenhof Research Center, Walchenseestr. 8–12, 83101 Rohrdorf, Germany
JOKE VAN DER GIESSEN
Affiliation:
National Institute of Public Health and Environment (RIVM), Center for Zoonoses and Environmental Microbiology, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
HEIN SPRONG
Affiliation:
National Institute of Public Health and Environment (RIVM), Center for Zoonoses and Environmental Microbiology, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
URMAS SAARMA*
Affiliation:
Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 50410 Tartu, Estonia
*
*Corresponding author: Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. E-mail: Urmas.Saarma@ut.ee

Summary

Echinococcus granulosus is the causative agent of cystic echinococcosis. The disease is a significant global public health concern and human infections are most commonly associated with E. granulosus sensu stricto (s. s.) genotype G1. The objectives of this study were to: (i) analyse the genetic variation and phylogeography of E. granulosus s. s. G1 in part of its main distribution range in Europe using 8274 bp of mtDNA; (ii) compare the results with those derived from previously used shorter mtDNA sequences and highlight the major differences. We sequenced a total of 91 E. granulosus s. s. G1 isolates from six different intermediate host species, including humans. The isolates originated from seven countries representing primarily Turkey, Italy and Spain. Few samples were also from Albania, Greece, Romania and from a patient originating from Algeria, but diagnosed in Finland. The analysed 91 sequences were divided into 83 haplotypes, revealing complex phylogeography and high genetic variation of E. granulosus s. s. G1 in Europe, particularly in the high-diversity domestication centre of western Asia. Comparisons with shorter mtDNA datasets revealed that 8274 bp sequences provided significantly higher phylogenetic resolution and thus more power to reveal the genetic relations between different haplotypes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altintas, N. (2003). Past to present: echinococcosis in Turkey. Acta Tropica 85, 105112.Google Scholar
Alvarez Rojas, C. A., Romig, T. and Lightowlers, M. W. (2014). Echinococcus granulosus sensu lato genotypes infecting humans – review of current knowledge. International Journal for Parasitology 44, 918.Google Scholar
Andresiuk, M. V., Gordo, F. P., Saarma, M., Elissondo, M. C., Taraborelli, A., Casalongue, C., Denegri, G. and Saarma, U. (2013). Echinococcus granulosus genotype G1 dominated in cattle and sheep during 2003–2006 in Buenos Aires province, an endemic area for cystic echinococcosis in Argentina. Acta Tropica 127, 136142.Google Scholar
Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Badaraco, J. L., Ayala, F. J., Bart, J. M., Gottstein, B. and Haag, K. L. (2008). Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations. Experimental Parasitology 119, 453459.CrossRefGoogle ScholarPubMed
Bandelt, H. J., Forster, P. and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Bart, J. M., Morariu, S., Knapp, J., Ilie, M. S., Pitulescu, M., Anghel, A., Cosoroaba, I. and Piarroux, R. (2006). Genetic typing of Echinococcus granulosus in Romania. Parasitology Research 98, 130137.CrossRefGoogle ScholarPubMed
Beato, S., Parreira, R., Calado, M. and Crácio, M. A. A. (2010). Apparent dominance of the G1–G3 genetic cluster of Echinococcus granulosus strains in the central inland region of Portugal. Parasitology International 59, 638642.Google Scholar
Boufana, B., Lahmar, S., Rebaï, W., Safta, Z. B., Jebabli, L., Ammar, A., Kachti, M., Aouadi, S. and Craig, P. S. (2014). Genetic variability and haplotypes of Echinococcus isolates from Tunisia. Transactions of the Royal Society of Tropical Medicine and Hygiene 108, 706714.CrossRefGoogle ScholarPubMed
Boufana, B., Lett, W. S., Lahmar, S., Buishi, I., Bodell, A. J., Varcasia, A., Casulli, A., Beeching, N. J., Campbell, F., Terlizzo, M., McManus, D. P. and Craig, P. S. (2015). Echinococcus equinus and Echinococcus granulosus sensu stricto from the United Kingdom: genetic diversity and haplotypic variation. International Journal for Parasitology 45, 161166.Google Scholar
Bowles, J., Blair, D. and McManus, D. P. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165173.CrossRefGoogle ScholarPubMed
Bowles, J., Blair, D. and McManus, D. (1994). Molecular genetic characterization of the cervid strain (‘northern form’) of Echinococcus granulosus . Parasitology 109, 215221.CrossRefGoogle ScholarPubMed
Breyer, I., Georgieva, D., Kudrova, R. and Gottstein, B. (2004). Echinococcus granulosus strain typing in Bulgaria: the G1 genotype is predominant in intermediate and definitive wild hosts. Parasitology Research 93, 127130.Google Scholar
Busi, M., Šnábel, V., Varcasia, A., Garippa, G., Perrone, V., De Liberato, C. and D'Amelio, S. (2007). Genetic variation within and between G1 and G3 genotypes of Echinococcus granulosus in Italy revealed by multilocus DNA sequencing. Veterinary Parasitology 150, 7583.Google Scholar
Cardona, G. A. and Carmena, D. (2013). A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Veterinary Parasitology 192, 1032.CrossRefGoogle ScholarPubMed
Carmena, D., Sánchez-Serrano, L. and Barbero-Martínez, I. (2008). Echinococcus granulosus infection in Spain. Zoonoses and Public Health 55, 156165.Google Scholar
Casulli, A., Manfredi, M. T., La Rosa, G., Di Cerbo, A. R., Genchi, C. and Pozio, E. (2008). Echinococcus ortleppi and E. granulosus G1, G2 and G3 genotypes in Italian bovines. Veterinary Parasitology 155, 168172.Google Scholar
Casulli, A., Interisano, M., Sreter, T., Chitimia, L., Kirkova, Z., La Rosa, G. and Pozio, E. (2012). Genetic variability of Echinococcus granulosus sensu stricto in Europe inferred by mitochondrial DNA sequences. Infection Genetics and Evolution 12, 377383.CrossRefGoogle ScholarPubMed
Chaligiannis, I., Maillard, S., Boubaker, G., Spiliotis, M., Saratsis, A., Gottstein, B. and Sotiraki, S. (2015). Echinococcus granulosus infection dynamics in livestock of Greece. Acta Tropica 150, 6470.Google Scholar
Chessa, B., Pereira, F., Arnaud, F., Amorim, A., Goyache, F., Mainland, I., Kao, R., Pemberton, J., Beraldi, D., Stear, M., Alberti, A., Pittau, M., Iannuzzi, L., Banabazi, M., Kazwala, R., Zhang, Y., Arranz, J. J., Ali, B., Wang, Z., Uzun, M., Dione, M., Olsaker, I., Holm, L.-E., Saarma, U., Ahmad, S., Marzanov, N., Eythorsdottir, E., Holland, M., Ajmone-Marsan, P., Bruford, M., Kantanen, J., Spencer, T. and Palmarini, M. (2009). Revealing the history of sheep domestication using retrovirus integrations. Science 324, 532536.CrossRefGoogle ScholarPubMed
Dakkak, A. (2010). Echinococcosis/hydatidosis: a severe threat in Mediterranean countries. Veterinary Parasitology 174, 211.Google Scholar
Daniel-Mwambete, K., Ponce-Gordo, F. and Cuesta-Bandera, C. (2004). Genetic identification and host range of the Spanish strains of Echinococcus granulosus . Acta Tropica 91, 8793.CrossRefGoogle ScholarPubMed
Daumerie, D., Savioli, L., Crompton, D. W. T. and Peters, P. (2010). Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases. World Health Organization, France.Google Scholar
Deplazes, P., van Knapen, F., Schweiger, A. and Overgaauw, P. A. (2011). Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Veterinary Parasitology 182, 4153.Google Scholar
Dore, F., Varcasia, A., Pipia, A. P., Sanna, G., Pinna Parpaglia, M. L., Corda, A., Romig, T. and Scala, A. (2014). Ultrasound as a monitoring tool for cystic echinococcosis in sheep. Veterinary Parasitology 203, 5964.Google Scholar
Eckert, J., Gemmell, M. A., Meslin, F.-X. and Pawlowski, Z. S. (eds.) (2001). WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. WHO/OIE, Paris.Google Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization]. (2014). Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series No. 23. Rome. 302 pp.Google Scholar
Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915925.Google Scholar
Garippa, G. and Manfredi, M. T. (2009). Cystic echinococcosis in Europe and in Italy. Veterinary Research Communications 33, 3539.Google Scholar
Giannetto, S., Poglayen, G., Brianti, E., Sorgi, C., Gaglio, G., Canu, S. and Virga, A. N. (2004). An epidemiological updating on cystic echinococcosis in cattle and sheep in Sicily, Italy. Parassitologia 46, 423424.Google ScholarPubMed
González, L. M., Daniel-Mwambete, K., Montero, E., Rosenzvit, M. C., McManus, D. P., Gárate, T. and Cuesta-Bandera, C. (2002). Further molecular discrimination of Spanish strains of Echinococcus granulosus . Experimental Parasitology 102, 4656.CrossRefGoogle ScholarPubMed
Haag, K. L., Araujo, A. M., Gottstein, B., Siles-Lucas, M., Thompson, R. and Zaha, A. (1999). Breeding systems in Echinococcus granulosus (Cestoda; Taeniidae): selfing or outcrossing? Parasitology 118, 6371.CrossRefGoogle ScholarPubMed
Kedra, A. H., Swiderski, Z., Tkach, V., Dubinsky, P., Pawlowski, Z., Stefaniak, J. and Pawlowski, J. (1999). Genetic analysis of Echinococcus granulosus from humans and pigs in Poland, Slovakia and Ukraine. A multicenter study. Acta Parasitologica 44, 248254.Google Scholar
Keis, M., Remm, J., Ho, S. Y. W., Davison, J., Tammeleht, E., Tumanov, I. L., Saveljev, A. P., Männil, P., Kojola, I., Abramov, A. V., Margus, T. and Saarma, U. (2013). Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographic structure and migration patterns among brown bears in north-western Eurasia. Journal of Biogeography 40, 915927.Google Scholar
Knapp, J., Nakao, M., Yanagida, T., Okamoto, M., Saarma, U., Lavikainen, A. and Ito, A. (2011). Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 61, 628638.Google Scholar
Knapp, J., Gottstein, B., Saarma, U. and Millon, L. (2015). Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: from fundamental knowledge to health ecology. Veterinary Parasitology 213, 8591.Google Scholar
Konyaev, S. V., Yanagida, T., Ivanov, M. V., Ruppel, V. V., Sako, Y., Nakao, M. and Ito, A. (2012). The first report on cystic echinococcosis in a cat caused by Echinococcus granulosus sensu stricto (G1). Journal of Helminthology 86, 391394.Google Scholar
Korsten, M., Ho, S. Y. W., Davison, J., Pähn, B., Vulla, E., Roht, M., Tumanov, I. L., Kojola, I., Andersone-Lilley, Z., Ozolins, J., Pilot, M., Mertzanis, Y., Giannakopoulos, A., Vorobiev, A. A., Markov, N. I., Saveljev, A. P., Lyapunova, E. A., Abramov, A. V., Männil, P., Valdmann, H., Pazetnov, S. V., Pazetnov, V. S., Rõkov, A. and Saarma, U. (2009). Sudden expansion of a single brown bear lineage in northern continental Eurasia: a general model for mammals after the last ice age? Molecular Ecology 18, 19631979.CrossRefGoogle ScholarPubMed
Laurimaa, L., Davison, J., Süld, K., Plumer, L., Oja, R., Moks, E., Keis, M., Hindrikson, M., Kinkar, L., Laurimäe, T., Abner, J., Remm, J., Anijalg, P. and Saarma, U. (2015). First report of highly pathogenic Echinococcus granulosus genotype G1 in European Union urban environment. Parasites & Vectors 8, 182.Google Scholar
Lavikainen, A., Lehtinen, M., Meri, T., Hirvelä-Koski, V. and Meri, S. (2003). Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus . Parasitology 127, 207215.Google Scholar
Lavikainen, A., Lehtinen, A., Laaksonen, S., Agren, E., Oksanen, A. and Meri, S. (2006). Molecular characterization of Echinococcus isolates of cervid origin from Finland and Sweden. Parasitology 133, 565570.Google Scholar
Librado, P. and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.Google Scholar
Marcinkute, A., Šarkunas, M., Moks, E., Saarma, U., Jokelainen, P., Bagrade, G., Laivacuma, S., Strupas, K., Sokolovas, V. and Deplazes, P. (2015). Echinococcus infections in the Baltic region. Veterinary Parasitology 213, 121131.Google Scholar
Martin-Hernando, M. P., González, L. M., Ruiz-Fons, F., Garate, T. and Gortazar, C. (2008). Massive presence of Echinococcus granulosus (Cestoda, Taeniidae) cysts in a wild boar (Sus scrofa) from Spain. Parasitology Research 103, 705707.Google Scholar
Mitrea, I. L., Ionita, M., Costin, I. I., Predoi, G., Avram, E., Rinaldi, L., Maurelli, M. P., Cringoli, G. and Genchi, C. (2014). Occurrence and genetic characterization of Echinococcus granulosus in naturally infected adult sheep and cattle in Romania. Veterinary Parasitology 206, 159166.Google Scholar
Moks, E., Jõgisalu, I., Saarma, U., Talvik, H., Järvis, T. and Valdmann, H. (2006). Helminthologic survey of the wolf (Canis lupus) in Estonia, with an emphasis on Echinococcus granulosus . Journal of Wildlife Diseases 42, 359365.Google Scholar
Moks, E., Jõgisalu, I., Valdmann, H. and Saarma, U. (2008). First report of Echinococcus granulosus G8 in Eurasia and a reappraisal of the phylogenetic relationships of ‘genotypes’ G5-G10. Parasitology 135, 647654.Google Scholar
Morgan, E., Clare, E., Jefferies, R. and Stevens, J. (2012). Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees? Parasitology 139, 19241938.CrossRefGoogle Scholar
Nakao, M., McManus, D., Schantz, P., Craig, P. and Ito, A. (2007). A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134, 713722.Google Scholar
Nakao, M., Li, T., Han, X., Ma, X., Xiao, N., Qiu, J., Wang, H., Yanagida, T., Mamuti, W. and Wen, H. (2010). Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences. International Journal for Parasitology 40, 379385.Google Scholar
Nakao, M., Yanagida, T., Konyaev, S., Lavikainen, A., Odnokurtsev, V. A., Zaikov, V. A. and Ito, A. (2013). Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology 140, 16251636.Google Scholar
Nakao, M., Lavikainen, A. and Hoberg, E. (2015). Is Echinococcus intermedius a valid species? Trends in Parasitology 31, 342343.CrossRefGoogle ScholarPubMed
Oksanen, A. and Lavikainen, A. (2015). Echinococcus canadensis transmission in the North. Veterinary Parasitology 213, 182186.Google Scholar
Onac, D., Győrke, A., Oltean, M., Gavrea, R. and Cozma, V. (2013). First detection of Echinococcus granulosus G1 and G7 in wild boars (Sus scrofa) and red deer (Cervus elaphus) in Romania using PCR and PCR-RFLP techniques. Veterinary Parasitology 193, 289291.CrossRefGoogle Scholar
Rannamäe, E., Lõugas, L., Niemi, M., Kantanen, J., Maldre, L., Kadõrova, N. and Saarma, U. (2016). Maternal and paternal genetic diversity of ancient sheep in Estonia from the late bronze age to the post-medieval period, and comparison with other regions in Eurasia. Animal Genetics 47, 208218.CrossRefGoogle Scholar
Romig, T., Dinkel, A. and Mackenstedt, U. (2006). The present situation of echinococcosis in Europe. Parasitology International 55, S187S191.CrossRefGoogle ScholarPubMed
Romig, T., Ebi, D. and Wassermann, M. (2015). Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Veterinary Parasitology 213, 7684.Google Scholar
Saarma, U., Jõgisalu, I., Moks, E., Varcasia, A., Lavikainen, A., Oksanen, A., Simsek, S., Andresiuk, V., Denegri, G. and González, L. M. (2009). A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 136, 317328.CrossRefGoogle ScholarPubMed
Scala, A., Garippa, G., Varcasia, A., Tranquillo, V. M. and Genchi, C. (2006). Cystic echinococcosis in slaughtered sheep in Sardinia (Italy). Veterinary Parasitology 135, 3338.CrossRefGoogle ScholarPubMed
Schneider, R., Gollackner, B., Schindl, M., Tucek, G. and Auer, H. (2010). Echinococcus canadensis G7 (pig strain): an underestimated cause of cystic echinococcosis in Austria. American Journal of Tropical Medicine and Hygiene 82, 871874.Google Scholar
Sherifi, K., Rexhepi, A., Hamidi, A., Behluli, B., Zessin, K. H., Mathis, A. and Deplazes, P. (2011). Detection of patent infections of Echinococcus granulosus (“sheep-strain”, G1) in naturally infected dogs in Kosovo. Berliner und Munchener Tierarztliche Wochenschrift 124, 518521.Google Scholar
Simsek, S. and Cevik, A. (2014). First detection and molecular characterization of Echinococcus equinus in a mule in Turkey. Acta Parasitologica 59, 773777.Google Scholar
Simsek, S., Roinioti, E. and Eroksuz, H. (2015). First report of Echinococcus equinus in a donkey in Turkey. Korean Journal of Parasitology 53, 731735.Google Scholar
Sobrino, R., González, L. M., Vicente, J., Fernández de Luco, D., Garate, T. and Gortázar, C. (2006). Echinococcus granulosus (Cestoda, Taeniidae) in the Iberian wolf. Parasitology Research 99, 753756.Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.Google Scholar
Thompson, R. (2008). The taxonomy, phylogeny and transmission of Echinococcus . Experimental Parasitology 119, 439446.Google Scholar
Thompson, R. A. and McManus, D. P. (2002). Towards a taxonomic revision of the genus Echinococcus . Trends in Parasitology 18, 452457.Google Scholar
Utuk, A. E. and Simsek, S. (2013). Molecular characterization of the horse isolate of Echinococcus granulosus in Turkey. Journal of Helminthology 87, 305308.Google Scholar
Varcasia, A., Canu, S., Lightowlers, M. W., Scala, A. and Garippa, G. (2006). Molecular characterization of Echinococcus granulosus strains in Sardinia. Parasitology Research 98, 273277.CrossRefGoogle ScholarPubMed
Varcasia, A., Canu, S., Kogkos, A., Pipia, A. P., Scala, A., Garippa, G. and Seimenis, A. (2007). Molecular characterization of Echinococcus granulosus in sheep and goats of Peloponnesus, Greece. Parasitology Research 101, 11351139.Google Scholar
Varcasia, A., Garippa, G., Pipia, A. P., Scala, A., Brianti, E., Giannetto, S., Battelli, G., Poglayen, G. and Micagni, G. (2008). Cystic echinococcosis in equids in Italy. Parasitology Research 102, 815818.Google Scholar
Varcasia, A., Tanda, B., Giobbe, M., Solinas, C., Pipia, A. P., Malgor, R., Carmona, C., Garippa, G. and Scala, A. (2011). Cystic echinococcosis in Sardinia: farmers’ knowledge and dog infection in sheep farms. Veterinary Parasitology 181, 335340.CrossRefGoogle ScholarPubMed
Vural, G., Baca, A. U., Gauci, C. G., Bagci, O., Gicik, Y. and Lightowlers, M. W. (2008). Variability in the Echinococcus granulosus cytochrome C oxidase 1 mitochondrial gene sequence from livestock in Turkey and a re-appraisal of the G1-3 genotype cluster. Veterinary Parasitology 154, 347350.Google Scholar
Xhaxhiu, D., Kusi, I., Rapti, D., Kondi, E., Postoli, R., Rinaldi, L., Dimitrova, Z. M., Visser, M., Knaus, M. and Rehbein, S. (2011). Principal intestinal parasites of dogs in Tirana, Albania. Parasitology Research 108, 341353.CrossRefGoogle ScholarPubMed
Yan, N., Nie, H.-M., Jiang, Z.-R., Yang, A.-G., Deng, S.-J., Guo, L., Yu, H., Yan, Y.-B., Tsering, D. and Kong, W.-S. (2013). Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences. Veterinary Parasitology 196, 179183.Google Scholar
Yanagida, T., Mohammadzadeh, T., Kamhawi, S., Nakao, M., Sadjjadi, S. M., Hijjawi, N., Abdel-Hafez, S. K., Sako, Y., Okamoto, M. and Ito, A. (2012). Genetic polymorphisms of Echinococcus granulosus sensu stricto in the Middle East. Parasitology International 61, 599603.Google Scholar
Yang, Y. R., Rosenzvit, M. C., Zhang, L. H., Zhang, J. Z. and McManus, D. P. (2005). Molecular study of Echinococcus in west-central China. Parasitology 131, 547555.Google Scholar
Zeder, M. A. (2008). Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proceedings of the National Academy of Sciences of the United States of America 105, 1159711604.Google Scholar
Supplementary material: File

Kinkar supplementary material

Tables S1-S3

Download Kinkar supplementary material(File)
File 19.6 KB