Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T16:24:52.024Z Has data issue: false hasContentIssue false

Fluoride exposure inhibits protein expression and enzyme activity in the lung-stage larvae of Ascaris suum

Published online by Cambridge University Press:  22 June 2006

M. K. ISLAM
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
T. MIYOSHI
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
M. YAMADA
Affiliation:
Laboratory of Chronic Disease Pathology, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
M. A. ALIM
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
X. HUANG
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
M. MOTOBU
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
N. TSUJI
Affiliation:
Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan

Abstract

Sodium fluoride (NaF) is an anion that has been previously shown to block the moulting process of Ascaris suum larvae. This study describes moulting and development-specific protein expression profiles of A. suum lung-stage L3 (AsLL3) following NaF exposure. AsLL3s cultured in the presence or absence of NaF were prepared for protein analysis using two-dimensional (2D) electrophoresis. NaF exposure inhibited at least 22 proteins in AsLL3 compared with moulted larvae (i.e. AsLL4). A further comparison of AsLL4 with those of pre-cultured AsLL3 and NaF-exposed AsLL3 revealed 8 stage-specifically and 4 over-expressed proteins. Immunoblot analysis revealed an inhibition by NaF of 19 immunoreactive proteins. Enzyme assay and immunochemical data showed an inhibition of the moulting-specific inorganic pyrophosphatase activity by 41% and a decreased expression in NaF-treated larvae, indicating its significance in the moulting process. A protein spot associated with NaF inhibition was isolated and identified by peptide mass spectrometry and bioinformatics approaches to be a member of 3–hydroxyacyl–CoA dehydrogenase/short-chain dehydrogenase enzyme families. These results have implications for the identification of proteins specific to the moulting process as potential chemotherapeutic targets.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J., Jefferies, J. R. and Brophy, P. M. ( 2000). Parasite proteomics. Parasitology Today 16, 400403.CrossRefGoogle Scholar
Behm, C. A. ( 2002). Metabolism. In The Biology of Nematodes ( ed. Lee, D. L.), pp. 261290. Taylor and Francis, London.CrossRef
Boag, P. R., Newton, S. E. and Gasser, R. B. ( 2001). Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Advances in Parasitology 50, 153198.CrossRefGoogle Scholar
Chandrashekar, R. and Mehta, K. ( 2000). Transglutaminase-catalysed reactions in the growth, maturation and development of parasitic nematodes. Parasitology Today 16, 1117.CrossRefGoogle Scholar
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. and Tsukita, S. ( 1998). Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. Journal of Cell Biology 141, 15391550.CrossRefGoogle Scholar
Hashmi, S., Zhang, J., Oksov, Y. and Lustigman, S. ( 2003). The Caenorhabditis elegans cathepsin Z-like cysteine protease, Ce-CPZ-1, has a multifunctional role during the worm's development. Journal of Biological Chemistry 279, 60356045.Google Scholar
Islam, M. K., Miyoshi, T., Kasuga-Aoki, H., Isobe, T., Arakawa, T., Matsumoto, Y. and Tsuji, N. ( 2003). Inorganic pyrophosphatase in the roundworm Ascaris and its role in the development and molting process of the larval stage parasites. European Journal of Biochemistry 270, 28142826.CrossRefGoogle Scholar
Islam, M. K., Miyoshi, T., Yamada, T. and Tsuji, N. ( 2005). Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infection and Immunity 73, 19952004.CrossRefGoogle Scholar
Islam, M. K., Miyoshi, T., Yokomizo, Y. and Tsuji, N. ( 2004). The proteome expression patterns in adult Ascaris suum under exposure to aerobic-anaerobic environment analyzed by two-dimensional electrophoresis. Parasitology Research 12, 1113.CrossRefGoogle Scholar
Kallberg, Y., Oppermann, U., Jornvall, H. and Persson, B. ( 2002). Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Science 11, 636641.CrossRefGoogle Scholar
Kita, K. and Takamiya, S. ( 2002). Electron-transfer complexes in Ascaris mitochondria. Advances in Parasitology 51, 95131.CrossRefGoogle Scholar
Klingbeil, M. M., Walker, D. J., Arnette, R., Sidway, E., Hayton, K., Komuniecki, P. R. and Komuniecki, R. ( 1996). Identification of a novel dihydrogenase-binding protein in the pyruvate dehydrogenase complex of the anaerobic parasitic nematode Ascaris suum. Journal of Biological Chemistry 271, 54515457.CrossRefGoogle Scholar
Köhler, P. ( 1985). The strategies of energy conservation in helminths. Molecular and Biochemical Parasitology 17, 118.CrossRefGoogle Scholar
Komuniecki, R. and Vanover, L. ( 1987). Biochemical changes during the aerobic-anaerobic transition in Ascaris suum larvae. Molecular and Biochemical Parasitology 22, 241248.CrossRefGoogle Scholar
Lee, D. L. ( 2002). Cuticle, moulting and exsheathment. In The Biology of Nematodes ( ed. Lee, D. L.), pp. 261290. Taylor and Francis, London.
Lustigman, S., Brotman, B., Huima, T., Castelhano, A. L., Singh, R. N., Mehta, K. and Prince, A. M. ( 1995). Transglutaminase-catalyzed reaction is important for molting of Onchocerca volvulus third-stage larvae. Antimicrobial Agents and Chemotherapy 39, 19131919.CrossRefGoogle Scholar
Ma, Y. C., Funk, M., Dunham, W. R. and Komuniecki, R. ( 1993). Purification and characterization of electron-transfer flavoprotein[ratio ]rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum. Journal of Biological Chemistry 268, 2036020365.Google Scholar
Majima, E., Koike, H., Hong, Y. M., Shinohara, Y. and Terada, H. ( 1993). Characterization of cysteine residues mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethyl-maleimide. Journal of Biological Chemistry 268, 2218122187.Google Scholar
Marchesini, N., Luo, S., Rodrigues, C. O., Moreno, S. N. J. and Docampo, R. ( 2000). Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. The Biochemical Journal 347, 243253.CrossRefGoogle Scholar
Nisbet, A. J., Cottee, P. and Gasser, R. B. ( 2004). Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. International Journal for Parasitology 34, 125138.CrossRefGoogle Scholar
O'Farrell, P. Z., Goodman, H. M. and O'Farrell, P. H. ( 1977). High resolution two dimensional electrophoresis of basic as well as acidic proteins. Cell 12, 11331141.CrossRefGoogle Scholar
Rao, G. S. J., Coleman, D. E., Karsten, W. E., Cook, P. F. and Harris, B. G. ( 2003). Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. Journal of Biological Chemistry 278, 3805138058.CrossRefGoogle Scholar
Rea, P. A. and Poole, R. J. ( 1993). Vacuolar H+-translocating pyrophosphatase. Annual Review of Plant Physiology and Plant Molecular Biology 44, 157180.CrossRefGoogle Scholar
Rosenfeld, J., Capdevielle, J., Claude, J., Guillemot, C. and Ferrara, P. ( 1992). In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry 203, 173179.CrossRefGoogle Scholar
Saz, H. J., Lescure, O. L. and Bueding, E. ( 1968). Biochemical observations of Ascaris suum lung-stage larvae. Journal of Parasitology 54, 457461.CrossRefGoogle Scholar
Scott, D. A., de Souza, W., Benchimol, M., Zhong, L., Lu, H. G., Moreno, S. N. J. and Docampo, R. ( 1998). Presence of a plant-like proton pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. Journal of Biological Chemistry 273, 2215122158.CrossRefGoogle Scholar
Soulsby, E. J. L. ( 1968). Helminths, Arthropods and Protozoa of Domesticated Animals, 6th Edn. ELBS and Bailliere, Tindall & Cassell, London.
Sutton, S. V. W., Bender, G. R. and Marquis, R. E. ( 1987). Fluoride inhibition of proton-translocating ATPases of oral bacteria. Infection and Immunity 55, 25972603.Google Scholar
Thongboonkerd, V., Luengpailin, J., Cao, J., Pierce, W. M., Cai, J., Klein, J. B. and Doyle, R. J. ( 2002). Fluoride exposure attenuates expression of Streptococcus pyogenes virulence factors. Journal of Biological Chemistry 277, 1659916605.CrossRefGoogle Scholar
Tsuji, N., Morales, T. H., Ozols, V. V., Carmody, A. B. and Chandrashekar, R. ( 2000 b). Cloning and preliminary characterization of a novel cuticular antigen from the filarial parasite Dirofilaria immitis. Parasitology International 49, 321325.Google Scholar
Tsuji, N. and Fujisaki, K. ( 1994). Development in vitro of free-living infective larvae to the parasitic stage of Strongyloides venezuelensis by temperature shift. Parasitology 109, 643648.CrossRefGoogle Scholar
Tsuji, N., Kasuga-Aoki, H., Isobe, T. and Yoshihara, S. ( 2000 a). Cloning and characterization of a peroxiredoxin from the swine roundworm Ascaris suum. International Journal for Parasitology 30, 125128.Google Scholar
Tsuji, N., Suzuki, K., Kasuga-Aoki, H., Matsumoto, Y., Arakawa, T. and Isobe, T. ( 2001). Intranasal immunization with recombinant Ascaris suum 14-kDa antigen coupled with cholera toxin B subunit induces protective immunity to Ascaris suum infection in mice. Infection and Immunity 69, 72857292.CrossRefGoogle Scholar
Ward, C. W. and Fairbairn, D. ( 1970 a). Enzymes of beta-oxidation and the tricarboxylic acid cycle in adult Hymenolepis diminuta (Cestoda) and Ascaris lumbricoides (Nematoda). Journal of Parasitology 56, 10091012.Google Scholar
Ward, C. W. and Fairbairn, D. ( 1970 b). Relationship between specific activities of enzymes involved in β-oxidation and the pattern of lipid utilization during embryogenesis of Ascaris lumbricoides eggs. Developmental Biology 22, 366387.Google Scholar
Yang, S. Y., He, X. Y. and Schulz, H. ( 2005). 3-Hydroxyacyl-CoA dehydrogenase and short-chain 3-hydroxyacyl-CoA dehydrogenase in human health and disease. FEBS Journal 272, 48744883.CrossRefGoogle Scholar
You, M., Xuan, X., Tsuji, N., Kamio, T., Taylor, D., Suzuki, N. and Fujisaki, K. ( 2003). Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis. Journal of Biological Chemistry 278, 85568563.CrossRefGoogle Scholar