Skip to main content Accessibility help
×
Home

Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae

  • W. Haas (a1), M. Körner (a1), E. Hutterer (a1), M. Wegner (a1) and B. Haberl (a1)...

Summary

Finding and recognition of snail second intermediate hosts was studied in cercariae of 3 echinostome species. The cercariae of the 3 species accumulated in snail-conditioned water (SCW) with 2 types of orientation mechanisms and responded to different small molecular weight (< 500 Da) components of SCW. Pseudechinoparyphium echinatum and Echinostoma revolutum cercariae returned by swimming an arc, when swimming in decreasing concentration gradients of SCW (turnback swimming). The stimulating cues of SCW were identified as hydrophilic organic molecules, probably posessing amino groups. Amino acids contributed to the attractivity of SCW, at least in P. echinatum, but they could not account for the complete attractivity of SCW. Hypoderaeum conoideum were directed chemotactically and swam along increasing concentration gradients of small peptides within SCW, but in decreasing SCW gradients they showed no turn-back swimming. Chemotactic orientation in H. conoideum only started 1 h after emission, which may assist the cercariae to leave the immediate area of their first intermediate host snails and to disperse. Attachments occurred specifically to snail hosts in the 3 species and were stimulated by macromolecular mucus compounds, probably mainly by viscoelastic properties of the mucus. The results of this study show, that host-finding mechanisms and the stimulating host cues of snail invading echinostome cercariae differ considerably from those of schistosome miracidia.

Copyright

References

Hide All
Christensen, N. O. (1980). A review of the influence of host- and parasite-related factors and environmental conditions on the host-finding capacity of the trematode miracidium. Acta Tropica 37, 303–18.
Christensen, N. O., Frandsen, F. & Roushdy, M. Z. (1980). The influence of environmental conditions and parasite- intermediate host-related factors on the transmission of Echinostoma liei. Zeitschrift für Parasitenkunde 63, 4763.
Denny, M. (1983). Molecular biomechanics of molluscan mucous secretions. In The Mollusca, Vol. 1 (ed. Hochachka, P. W.), pp. 431–65. New York: Academic Press.
Disko, R. & Weber, L. (1979). The attraction of miracidia of Schistosoma mansoni to the snail Biomphalaria glabrata. Zentralblatt für Bakteriologie 263, 197.
Dubois, M., Gilles, K. A., Hamilton, J. K., Reben, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–6.
Evans, N. A. & Gordon, D. M. (1983 a). Experimental observations on the specificity of Echinoparyphium recurvatum toward second intermediate hosts. Zeitschrift für Parasitenkunde 69, 217–22.
Evans, N. A. & Gordon, D. M. (1983 b). Experimental studies on the transmission dynamics of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87, 167–74.
Evans, N. A., Whitfield, P. J. & Dobson, A. P. (1981). Parasite utilization of a host community: the distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of mollusc at Harting Pond, Sussex. Parasitology 83, 112.
Fraenkel, G. S. & Gunn, D. L. (1961). The Orientation of Animals. Kineses, Taxes and Compass Reactions, 2nd Edn. New York: Dover Publications.
Fried, B. & King, W. (1989). Attraction of Echinostoma revolutum cercariae to Biomphalaria glabrata dialysate. Journal of Parasitology 75, 55–7.
Graefe, G. W. & Burkert, D. G. (1972). Zur Lokomotionsmechanik von Diplostomatiden- und Echinostomatiden-Cercarien (Trematoda). Zoologischer Anzeiger, Leipzig? 188, 366–9.
Graser, T. A., Godel, H. G., Albers, S., Födl, P. & Fürst, P. (1985). An ultra rapid and sensitive high-perfomance liquid chromatographic method for determination of tissue and plasma free amino acids. Analytical Biochemistry 151, 142–52.
Haas, W. (1992). Physiological analysis of cercarial behavior. Journal of Parasitology 78, 243–55.
Haas, W. (1994). Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology (in the press).
Haas, W., Gui, M., Haberl, B. & Ströbel, M. (1991). Miracidia of Schistosoma japonicum: approach and attachment to the snail host. Journal of Parasitology 77, 509–13.
Haberl, B. & Haas, W. (1992). Miracidium of Schistosoma mansoni: a macromolecular glycoconjugate as signal for the behaviour after contact with the snail host. Comparative Biochemistry and Physiology 101A, 329–33.
Haberl, B., Kalbe, M., Fuchs, H., Ströbel, M., Schmalfuss, G. & Haas, W. (1995). Schistosoma mansoni and S. haematobium. Miracidial host-finding behavior is stimulated by macromolecules. International Journal for Parasitology (in the press).
Huffman, J. E. & Fried, B. (1990). Echinostoma and Echinostomiasis. Advances in Parasitology 29, 215–69.
Kanev, I. (1985). On the morphology, biology, ecology and taxonomy of E. revolutum group (Trematoda: Echinostomatidae: Echinostoma). Ph. D. dissertation, University of Sofia, Sofia, Bulgaria.
Kanev, I. & Vassilev, I. (1986). On the identity of Echinoparyphium aconiatum Dietz 1909 ( = Pseudechinoparyphium echinatum G. and Sp. Nov. Comb.). Proceedings of the 4th Helminthological Symposium, The High Tartras, Czechoslovakia, p. 4.
Macinnis, A. J. (1965). Responses of Schistosoma mansoni miracidia to chemical attractants. Journal of Parasitology 51, 731–46.
Macinnis, A. J. (1976). How parasites find hosts: Some thoughts on the inception of host-parasite integration. In Ecological Aspects of Parasitology, (ed. Kennedy, C. R.), pp. 320. Amsterdam: North-Holland Publications.
Macinnis, A. J., Bethel, W. M. & Cornford, E. M. (1974). Identification of chemicals of snail origin that attract Schistosoma mansoni miracidia. Nature, London 248, 361–3.
Mason, P. R. (1977). Stimulation of the activity of Schistosoma mansoni miracidia by snail-conditioned water. Parasitology 75, 325–38.
Mason, P. R. & Fripp, P. J. (1977). Chemical stimulation of Schistosoma mansoni miracidial activity. Zeitschrift für Parasitenkunde 53, 287–95.
Mccarthy, A. M. (1990). The influence of second intermediate host dispersion pattern upon the transmission of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 101, 43–7.
Mccarthy, A. M. & Kanev, I. (1990). Pseudechinoparyphium echinatum (Digenea: Echinostomatidae): experimental observations on cercarial specificity toward second intermediate hosts. Parasitology 100, 423–8.
Saladin, K. S. (1979). Behavioral parasitology and perspectives on miracidial host-finding. Zeitschrift für Parasitenkunde 60, 197210.
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. 2nd Edn. Cambridge: Cambridge University Press.
Spiro, R. G. (1966). Analysis of carbohydrates found in glycoproteins. In Methods in Enzymology, Vol. 8 (ed. Neufeld, E. F.), pp. 323. New York: Academic Press.
Sponholtz, G. M. & Short, R. B. (1976). Schistosoma mansoni miracidia: Stimulation by calcium and magnesium. Journal of Parasitology 62, 155–7.
Stibbs, H. H., Chernin, E., Ward, S. & Karnovsky, M. L. (1976). Magnesium emitted by snails alters swimming behaviour of Schistosoma mansoni miracidia. Nature, London 260, 702–3.
Sukhdeo, M. V. K. & Mettrick, D. F. (1987). Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 73144.
Thomas, J. D. & Eaton, p. (1993). Amino acid medleys of snail origin as possible sources of information for conspecifics, schistosome miracidia and predators. Comparative Biochemistry and Physiology 106C, 781–96.

Keywords

Related content

Powered by UNSILO

Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae

  • W. Haas (a1), M. Körner (a1), E. Hutterer (a1), M. Wegner (a1) and B. Haberl (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.