Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T10:45:31.941Z Has data issue: false hasContentIssue false

Expression of two cell wall proteins during the intracellular development of Encephalitozoon cuniculi: an immunocytochemical and in situ hybridization study with ultrathin frozen sections

Published online by Cambridge University Press:  10 February 2006

V. TAUPIN
Affiliation:
Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
G. MÉTÉNIER
Affiliation:
Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
F. DELBAC
Affiliation:
Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
C. P. VIVARÈS
Affiliation:
Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
G. PRENSIER
Affiliation:
Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France

Abstract

The microsporidian Encephalitozoon cuniculi is an obligate intracellular parasite that develops asynchronously inside parasitophorous vacuoles. Spore differentiation involves the construction of a cell wall commonly divided into an outer layer (exospore) and a thicker, chitin-rich inner layer (endospore). The developmental patterns of protein deposition and mRNA expression for 2 different spore wall proteins were studied using immunocytochemical and in situ hybridization procedures with ultrathin frozen sections. The onset of deposition of an exospore-destined protein (SWP1) correlated with the formation of lamellar protuberances during meront-to-sporont conversion. No evidence for a release of SWP1 towards the parasitophorous vacuole lumen was obtained. An endospore-destined protein (EnP1) was detected early on the plasma membrane of meronts prior to extensive accumulation within the chitin-rich layer of sporoblasts. swp1 mRNA was preferentially synthesized in early sporogony while enp1 mRNA was transcribed during merogony and a large part of sporogony. The level of both mRNAs was reduced in mature spores. Considering the availability of the E. cuniculi genome sequence, the application of nucleic and/or protein probes to cryosections should facilitate the screening of various genes for stage-specific expression during microsporidian development.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bigliardi, E., Selmi, M. G., Lupetti, P., Corona, S., Gatti, S., Scaglia, M. and Sacchi, L. ( 1996). Microsporidian spore wall: ultrastructural findings on Encephalitozoon hellem exospore. Journal of Eukaryotic Microbiology 43, 181186.CrossRefGoogle Scholar
Böhne, W., Ferguson, D. J., Kohler, K. and Gross, U. ( 2000). Developmental expression of a tandemly repeated, glycine- and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi. Infection and Immunity 68, 22682275.CrossRefGoogle Scholar
Brosson, D., Kuhn, L., Prensier, G., Vivarès, C. P. and Texier, C. ( 2005). The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore wall formation. FEMS Microbiology Letters 247, 8190.CrossRefGoogle Scholar
Cali, A., Kotler, D. P. and Orenstein, J. M. ( 1993). Septata intestinalis N. G., N. Sp., an intestinal microsporidian associated with chronic diarrhea and dissemination in AIDS patients. Journal of Eukaryotic Microbiology 40, 101111.Google Scholar
Delbac, F., Duffieux, F., David, D., Méténier, G. and Vivarès, C. P. ( 1998 a). Immunocytochemical identification of spore proteins in two microsporidia, with emphasis on extrusion apparatus. Journal of Eukaryotic Microbiology 45, 224231.Google Scholar
Delbac, F., Peyret, P., Méténier, G., David, D., Danchin, A. and Vivarès, C. P. ( 1998 b). On proteins of the microsporidian invasive apparatus: complete sequence of a polar tube protein of Encephalitozoon cuniculi. Molecular Microbiology 29, 825834.Google Scholar
Delbac, F., Peuvel, I., Méténier, G., Peyretaillade, E. and Vivarès, C. P. ( 2001). Microsporidian invasion apparatus: identification of a novel polar tube protein and evidence for clustering of ptp1 and ptp2 genes in three Encephalitozoon species. Infection and Immunity 69, 10161024.CrossRefGoogle Scholar
Didier, E. S. ( 2005). Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Tropica 94, 6176.CrossRefGoogle Scholar
Franzen, C. ( 2004). Microsporidia: how can they invade other cells? Trends in Parasitology 20, 275279.Google Scholar
Hayman, J. R., Hayes, S. F., Amon, J. and Nash, T. E. ( 2001). Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intestinalis. Infection and Immunity 69, 70577066.CrossRefGoogle Scholar
Jambou, R., Hatin, I. and Jaureguiberry, G. ( 1995). Evidence by in situ hybridization for stage-specific expression of the ATP/ADP translocator mRNA in Plasmodium falciparum. Experimental Parasitology 80, 568571.CrossRefGoogle Scholar
Katinka, M. D., Duprat, S., Cornillot, E., Méténier, G., Thomarat, F., Prensier, G., Barbe, V., Peyretaillade, E., Brottier, P., Wincker, P., Delbac, F., El Alaoui, H., Peyret, P., Saurin, W., Gouy, M., Weissenbach, J. and Vivarès, C. P. ( 2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, London 414, 450453.CrossRefGoogle Scholar
Keohane, E. M., Orr, G. A., Zhang, H. S., Takvorian, P. M., Cali, A., Tanowitz, H. B., Wittner, M. and Weiss, L. M. ( 1998). The molecular characterization of the major polar tube protein gene from Encephalitozoon hellem, a microsporidian parasite of humans. Molecular and Biochemical Parasitology 9, 227236.CrossRefGoogle Scholar
Morel, G. and Cavalier, A. ( 2000). Hybridation in situ en Microscopie Électronique. Editions Médicales Internationales, TEC & DOC, Londres, Paris, New-York.
Peuvel, I., Delbac, F., Méténier, G., Peyret, P. and Vivarès, C. P. ( 2000). Polymorphism of the gene encoding a major polar tube protein PTP1 in two microsporidia of the genus Encephalitozoon. Parasitology 121, 581587.CrossRefGoogle Scholar
Peuvel, I., Peyret, P., Méténier, G., Vivarès, C. P. and Delbac, F. ( 2002). The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi. Molecular and Biochemical Parasitology 122, 6980.CrossRefGoogle Scholar
Peuvel-Fanget, I., Polonais, V., Brosson, D., Texier, C., Kuhn, L., Peyret, P., Vivarès, C. P. and Delbac, F. ( 2006). EnP1 and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. International Journal for Parasitology (in the Press).CrossRefGoogle Scholar
Prigneau, O., Achbarou, A., Bouladoux, N., Mazier, D. and Desportes-Livage, I. ( 2000). Identification of proteins in Encephalitozoon intestinalis, a microsporidian pathogen of immunocompromised humans: an immunoblotting and immunocytochemical study. Journal of Eukaryotic Microbiology 47, 4856.CrossRefGoogle Scholar
Shadduck, J. A., Bendele, R. and Robinson, G. T. ( 1978). Isolation of the causative organism of canine encephalitozoonosis. Veterinary Pathology 15, 449460.CrossRefGoogle Scholar
Sprague, V. and Vernick, S. H. ( 1971). The ultrastructure of Encephalitozoon cuniculi (Microsporida, Nosematidae) and its taxonomic significance. Journal of Protozoology 18, 560569.CrossRefGoogle Scholar
Texier, C., Brosson, D., El Alaoui, H., Méténier, G. and Vivarès, C. P. ( 2005). Post-genomics of microsporidia, with emphasis on a model of minimal eucaryotic proteome: a review. Folia Parasitologica 52, 1522.CrossRefGoogle Scholar
Tokuyasu, K. T. ( 1973). A technique for ultracryotomy of cell suspensions and tissues. Journal of Cell Biology 57, 551565.CrossRefGoogle Scholar
Tovar, J., Leon-Avila, G., Sanchez, L. B., Sutak, R., Tachezy, J., Van Der Giezen, M., Hernandez, M., Müller, M. and Lucocq, J. M. ( 2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature, London 426, 172176.CrossRefGoogle Scholar
Van Gool, T., Biderre, C., Delbac, F., Wentink-Bonnema, E., Peek, R. and Vivarès, C. P. ( 2004). Serodiagnostic studies in an immunocompetent individual infected with Encephalitozoon cuniculi. Journal of Infectious Diseases 189, 243249.Google Scholar
Vivarès, C. P. and Méténier, G. ( 2004). The microsporidia genome: living with minimal genes as an intracellular eukaryote. In Opportunistic infections: Toxoplasma, Sarcocystis and Microsporidia. World Class Parasites ( ed. Lindsay, D. S. and Weiss, L. M.), pp. 215242. Kluwer Academic Publishers, Boston.CrossRef
Williams, B. A., Hirt, R. P., Lucocq, J. M. and Embley, T. M. ( 2002). A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature, London 418, 865869.CrossRefGoogle Scholar
Wittner, M. and Weiss, L. M. ( 1999). The Microsporidia and Microsporidiosis. American Society for Microbiology, Washington, D.C.
Wright, H. T., Sandrasegaram, G. and Wright, C. S. ( 1991). Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. Journal of Molecular Evolution 33, 283294.CrossRefGoogle Scholar
Xu, Y., Takvorian, P. M., Cali, A., Orr, G. and Weiss, L. M. ( 2004). Glycosylation of the major polar tube protein of Encephalitozoon hellem, a microsporidian parasite that infects humans. Infection and Immunity 72, 63416350.CrossRefGoogle Scholar