Skip to main content Accessibility help
×
Home

Expression of LPG and GP63 by different developmental stages of Leishmania major in the sandfly Phlebotomus papatasi

  • C. R. Davies (a1), A. M. Cooper (a1), C. Peacock (a1), R. P. Lane (a1) and J. M. Blackwell (a1)...

Summary

Development and forward migration of Leishmania parasites in the sandfly gut is accompanied by morphological transformation to highly motile, non-dividing ‘metacyclic’ forms. Previous studies in vitro have demonstrated that this metacyclogenesis is associated with developmentally regulated changes in expression of two major surface glycoconjugates of Leishmania, the lipophosphoglycan (LPG) and the glycoprotein protease GP63. Studies presented here are the first to examine in situ the changes in expression of these two important surface molecules which occur during amastigote-initiated development of L. major in its natural vector Phlebotomus papatasi. Immunocytochemical analysis using a GP63-specific monoclonal (3.8). and others recognizing metacyclic-specific (3F12) and common (WIC79.3) epitopes of LPG on logarithmic and metacyclic promastigotes, demonstrates: (1) clear expression of LPG and GP63 from 2 and 7 days post-bloodfeeding, respectively; (2) developmental modification of the LPG molecule as parasites undergo forward migration and morphological changes associated with metacyclogenesis; and (3) striking deposition of large amounts of parasite-free excreted LPG on/in the epithelial cells of the gut wall.

Copyright

References

Hide All
Adler, S. & Theodor, O. (1931). Investigations of Mediterranean kala-azar. I–V. Proceedings of the Royal Society, B, 108, 447502.
Adler, S. & Theodor, O. (1957). Transmission of disease agents by phlebotomine sandflies. Annual Review of Entomology 2, 203–26.
Bordier, C. (1987). The promastigote surface protease of Leishmania. Parasitology Today 3, 151–3.
Button, L. L. & McMaster, W. R. (1988). Molecular cloning of the major surface antigen of Leishmania. Journal of Experimental Medicine 167, 724–9.
Channon, J. Y., Roberts, M. B. & Blackwell, J. M. (1984). A study of the differential respiratory activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53, 345–55.
Cooper, A. M., Rosen, H. & Blackwell, J. M. (1988). Monoclonal antibodies that recognise distinct epitopes of the macrophage type three complement receptor differ in their ability to inhibit binding of Leishmania promastigotes harvested at different phases of their growth cycle. Immunology 65, 511–14.
Elkins, D. B. & Lane, R. P. (1988). An improved membrane feeder for haematophagous arthropods. Annals of Tropical Medical Parasitology 82, 217–19.
Handman, E. & Goding, J. W. (1985). The Leishmania receptor for macrophages is a lipid containing glycoconjugate. EMBO Journal 4, 329–36.
Handman, E., Greenblatt, C. L. & Goding, J. W. (1984). An amphipathic sulphated glycoconjugate of Leishmania: characterization with monoclonal antibodies. EMBO Journal 3, 2301–6.
Howard, M. K., Sayers, G. & Miles, M. A. (1987). Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Experimental Parasitology 64, 147–56.
Ibarra, De A. A., Howard, J. G. & Snary, D. (1982). Monoclonal antibodies to Leishmania tropica major: specificities and antigen location. Parasitology 85, 523–31.
Killick-Kendrick, K. (1979). Biology of Leishmania in sandflies. In Biology of the Kinetoplastida, (ed. Lumsden, W. H. R. & Evans, D. H.), pp. 395460. London: Academic Press.
Killick-Kendrick, K. (1986). The transmission of leishmaniasis by the bite of the sandfly. Journal of the Royal Army Medical Corps 132, 134–40.
Killick-Kendrick, K., Leaney, A. J. & Ready, P. D. (1977). The establishment, maintenance and productivity of a laboratory colony of Lutzomia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology 13, 429–40.
Killick-Kendrick, K., Wallbanks, K. R., Molyneux, D. H. & Lavin, D. R. (1988). The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi. Parasitological Research 74, 586–90.
Kweider, M., Lemesre, J., Darcy, F., Kusnierz, J. P., Capron, A. & Santoro, F. (1987). Infectivity of Leishmania braziliensis promastigotes is dependent on the increasing expression of a 65,000 dalton surface antigen. Journal of Immunology 138, 299305.
Lainson, R., Ward, R. D. & Shaw, J. J. (1977). Experimental transmission of Leishmania chagasi, causative agent of neotropical visceral leishmaniasis, by the sandfly Lutzomia longipalpis. Nature, London 266, 628–30.
Lawyer, P. G., Young, D. G., Butler, J. F. & Akin, D. E. (1987). Development of Leishmania mexicana in Lutzomyia diabolica and Lutzomyia shannoni (Diptera: Psychodidae). Journal of Medical Entomolgy 24, 347–55.
McNeely, T. B., Rosen, G., Londner, M. V. & Turco, S. J. (1989). Inhibitory effects of protein kinase C activity by lipophosphoglycan fragments and glycosylphatidylinositol antigens of the protozoan parasite Leishmania. The Biochemical Journal 259, 601–4.
Napier, L. E. (1946). Principles and Practice of Tropical Medicine. New York: MacMillan & Co.
Pimenta, P. F. P., Silva, Da R. P., Sacks, D. L. & Silva, Da P. P. (1989). Cell surface nananatomy of Leishmania major as revealed by fracture-flip. A surface meshwork of 44 nm fusiform filaments indentifies infective developmental stage promastigotes. European Journal of Cell Biology 48, 180–90.
Puentes, S. M., Sacks, D. L., Silva, Da R. P. & Joiner, K. A. (1988). Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan. Journal of Experimental Medicine 169, 887902.
Puentes, S. M., Silva, Da R. P., Sacks, D. L., Hammer, C. H. & Joiner, K. A. (1989). Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. Journal of Immunology 143, 3743–9.
Rioux, J. A., Lanotte, G., Croset, H., Houin, R., Guy, M. & Dedet, J. P. (1972). Ecologie des leishmanioses, dans le sud de la France. 3. Receptivite comparee de Phlebotomus ariasi Tannoir, 1921 et Rhipicephalus turanicus Pomeranceu et Matikasvili, 1940 vis-a-vis de Leishmania donovani (Laveran et Mesnil, 1903). Annales de Parasitologie 47, 147–57.
Roberts, M., Alexander, J. & Blackwell, J. M. (1989). Influence of Lsh, H-2 and an H-11-linked gene on visceralisation and metastasis associated with Leishmania mexicana infection in mice. Infection and Immunity 57, 875–81.
Russell, D. G. & Wilhelm, H. (1986). The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. Journal of Immunology 136, 2613–20.
Russell, D. G. & Wright, S. D. (1988). Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein gp63, of Leishmania promastigotes. Journal of Experimental Medicine, 168, 279–92.
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100–3.
Sacks, D. L. & Perkins, P. V. (1984). Identification of an infective stage of Leishmania promastigotes. Science 223, 1417–19.
Sacks, D. L. & Perkins, P. V. (1985). Development of infective stage Leishmania promastigotes within phlebotomine sandflies. American Journal of Tropical Medicine and Hygiene 34, 456–9.
Sacks, D. L. & Silva, Da R. P. (1987). The generation of infective stage Leishmania major promastigotes is associated with the cell surface expression and release of a developmentally regulated glycolipid. Journal of Immunology 139, 3099–106.
Sacks, D. L., Hieny, S. & Sher, A. (1985). Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564–9.
Schnur, L. F., Zuckerman, A. & Greenblatt, C. L. (1972). Leishmanial serotypes as distinguished by the gel diffusion of factor excreted in vitro and in vivo. Israeli Journal of Medical Science 8, 932–42.
Shortt, H. E. & Swaminath, C. S. (1928). The method of feeding of Phlebotomus argentipes with relation to its bearing on the transmission of kala-azar. Indian Journal of Medical Research 15, 827–36.
Silva, Da R. P. & Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infection and Immunity 55, 2802–6.
Talamas, P. & Russell, D. G. (1989). Leishmania lipophosphoglycan (LPG) binds to the CR3, LFA-1, p150, 95 family of adhesion receptors. Journal of Cellular Biochemistry, Suppl. 13E, 158.
Turco, S. J. (1988). The lipophosphoglycan of Leishmania. Parasitology Today 4, 255–7.
Walters, L. L., Modi, G. B., Tesh, R. B. & Burrage, T. (1987). Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abbonenci (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 36, 294314.
Walters, L. L., Chaplin, G. L., Modi, G. B. & Tesh, R. B. (1989 a). Ultrastructural biology of (Leishmania Viannia) panamensis ( = Leishmania brasiliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 40, 1939.
Walters, L. L., Modi, G. B., Chaplin, G. L. & Tesh, R. B. (1989 b). Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 40, 295317.
Warburg, A. & Schlein, Y. (1986). The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. American Journal of Tropical Medicine and Hygiene 35, 926–30.
Warburg, A., Hamada, G. S., Schlein, Y. & Shire, D. (1989). Scanning electron microscopy of Leishmania major in Phlebotomus papatasi. Zeitschrift für Parasitenkunde 72, 423–31.
Williams, P. (1966). Experimental transmission of Leishmania mexicana by Lutzomyia cruciata. Annals of Tropical Medicine and Parasitology 60, 365–72.

Keywords

Related content

Powered by UNSILO

Expression of LPG and GP63 by different developmental stages of Leishmania major in the sandfly Phlebotomus papatasi

  • C. R. Davies (a1), A. M. Cooper (a1), C. Peacock (a1), R. P. Lane (a1) and J. M. Blackwell (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.