Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:17:54.369Z Has data issue: false hasContentIssue false

Expression of LPG and GP63 by different developmental stages of Leishmania major in the sandfly Phlebotomus papatasi

Published online by Cambridge University Press:  06 April 2009

C. R. Davies
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
A. M. Cooper
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
C. Peacock
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
R. P. Lane
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
J. M. Blackwell
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT

Summary

Development and forward migration of Leishmania parasites in the sandfly gut is accompanied by morphological transformation to highly motile, non-dividing ‘metacyclic’ forms. Previous studies in vitro have demonstrated that this metacyclogenesis is associated with developmentally regulated changes in expression of two major surface glycoconjugates of Leishmania, the lipophosphoglycan (LPG) and the glycoprotein protease GP63. Studies presented here are the first to examine in situ the changes in expression of these two important surface molecules which occur during amastigote-initiated development of L. major in its natural vector Phlebotomus papatasi. Immunocytochemical analysis using a GP63-specific monoclonal (3.8). and others recognizing metacyclic-specific (3F12) and common (WIC79.3) epitopes of LPG on logarithmic and metacyclic promastigotes, demonstrates: (1) clear expression of LPG and GP63 from 2 and 7 days post-bloodfeeding, respectively; (2) developmental modification of the LPG molecule as parasites undergo forward migration and morphological changes associated with metacyclogenesis; and (3) striking deposition of large amounts of parasite-free excreted LPG on/in the epithelial cells of the gut wall.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S. & Theodor, O. (1931). Investigations of Mediterranean kala-azar. I–V. Proceedings of the Royal Society, B, 108, 447502.Google Scholar
Adler, S. & Theodor, O. (1957). Transmission of disease agents by phlebotomine sandflies. Annual Review of Entomology 2, 203–26.CrossRefGoogle Scholar
Bordier, C. (1987). The promastigote surface protease of Leishmania. Parasitology Today 3, 151–3.CrossRefGoogle ScholarPubMed
Button, L. L. & McMaster, W. R. (1988). Molecular cloning of the major surface antigen of Leishmania. Journal of Experimental Medicine 167, 724–9.CrossRefGoogle ScholarPubMed
Channon, J. Y., Roberts, M. B. & Blackwell, J. M. (1984). A study of the differential respiratory activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53, 345–55.Google ScholarPubMed
Cooper, A. M., Rosen, H. & Blackwell, J. M. (1988). Monoclonal antibodies that recognise distinct epitopes of the macrophage type three complement receptor differ in their ability to inhibit binding of Leishmania promastigotes harvested at different phases of their growth cycle. Immunology 65, 511–14.Google ScholarPubMed
Elkins, D. B. & Lane, R. P. (1988). An improved membrane feeder for haematophagous arthropods. Annals of Tropical Medical Parasitology 82, 217–19.CrossRefGoogle ScholarPubMed
Handman, E. & Goding, J. W. (1985). The Leishmania receptor for macrophages is a lipid containing glycoconjugate. EMBO Journal 4, 329–36.CrossRefGoogle ScholarPubMed
Handman, E., Greenblatt, C. L. & Goding, J. W. (1984). An amphipathic sulphated glycoconjugate of Leishmania: characterization with monoclonal antibodies. EMBO Journal 3, 2301–6.CrossRefGoogle ScholarPubMed
Howard, M. K., Sayers, G. & Miles, M. A. (1987). Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Experimental Parasitology 64, 147–56.CrossRefGoogle ScholarPubMed
Ibarra, De A. A., Howard, J. G. & Snary, D. (1982). Monoclonal antibodies to Leishmania tropica major: specificities and antigen location. Parasitology 85, 523–31.CrossRefGoogle ScholarPubMed
Killick-Kendrick, K. (1979). Biology of Leishmania in sandflies. In Biology of the Kinetoplastida, (ed. Lumsden, W. H. R. & Evans, D. H.), pp. 395460. London: Academic Press.Google Scholar
Killick-Kendrick, K. (1986). The transmission of leishmaniasis by the bite of the sandfly. Journal of the Royal Army Medical Corps 132, 134–40.CrossRefGoogle Scholar
Killick-Kendrick, K., Leaney, A. J. & Ready, P. D. (1977). The establishment, maintenance and productivity of a laboratory colony of Lutzomia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology 13, 429–40.CrossRefGoogle Scholar
Killick-Kendrick, K., Wallbanks, K. R., Molyneux, D. H. & Lavin, D. R. (1988). The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi. Parasitological Research 74, 586–90.CrossRefGoogle ScholarPubMed
Kweider, M., Lemesre, J., Darcy, F., Kusnierz, J. P., Capron, A. & Santoro, F. (1987). Infectivity of Leishmania braziliensis promastigotes is dependent on the increasing expression of a 65,000 dalton surface antigen. Journal of Immunology 138, 299305.CrossRefGoogle Scholar
Lainson, R., Ward, R. D. & Shaw, J. J. (1977). Experimental transmission of Leishmania chagasi, causative agent of neotropical visceral leishmaniasis, by the sandfly Lutzomia longipalpis. Nature, London 266, 628–30.CrossRefGoogle Scholar
Lawyer, P. G., Young, D. G., Butler, J. F. & Akin, D. E. (1987). Development of Leishmania mexicana in Lutzomyia diabolica and Lutzomyia shannoni (Diptera: Psychodidae). Journal of Medical Entomolgy 24, 347–55.CrossRefGoogle ScholarPubMed
McNeely, T. B., Rosen, G., Londner, M. V. & Turco, S. J. (1989). Inhibitory effects of protein kinase C activity by lipophosphoglycan fragments and glycosylphatidylinositol antigens of the protozoan parasite Leishmania. The Biochemical Journal 259, 601–4.CrossRefGoogle Scholar
Napier, L. E. (1946). Principles and Practice of Tropical Medicine. New York: MacMillan & Co.Google Scholar
Pimenta, P. F. P., Silva, Da R. P., Sacks, D. L. & Silva, Da P. P. (1989). Cell surface nananatomy of Leishmania major as revealed by fracture-flip. A surface meshwork of 44 nm fusiform filaments indentifies infective developmental stage promastigotes. European Journal of Cell Biology 48, 180–90.Google Scholar
Puentes, S. M., Sacks, D. L., Silva, Da R. P. & Joiner, K. A. (1988). Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan. Journal of Experimental Medicine 169, 887902.CrossRefGoogle Scholar
Puentes, S. M., Silva, Da R. P., Sacks, D. L., Hammer, C. H. & Joiner, K. A. (1989). Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. Journal of Immunology 143, 3743–9.CrossRefGoogle Scholar
Rioux, J. A., Lanotte, G., Croset, H., Houin, R., Guy, M. & Dedet, J. P. (1972). Ecologie des leishmanioses, dans le sud de la France. 3. Receptivite comparee de Phlebotomus ariasi Tannoir, 1921 et Rhipicephalus turanicus Pomeranceu et Matikasvili, 1940 vis-a-vis de Leishmania donovani (Laveran et Mesnil, 1903). Annales de Parasitologie 47, 147–57.Google Scholar
Roberts, M., Alexander, J. & Blackwell, J. M. (1989). Influence of Lsh, H-2 and an H-11-linked gene on visceralisation and metastasis associated with Leishmania mexicana infection in mice. Infection and Immunity 57, 875–81.CrossRefGoogle Scholar
Russell, D. G. & Wilhelm, H. (1986). The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. Journal of Immunology 136, 2613–20.CrossRefGoogle ScholarPubMed
Russell, D. G. & Wright, S. D. (1988). Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein gp63, of Leishmania promastigotes. Journal of Experimental Medicine, 168, 279–92.CrossRefGoogle Scholar
Sacks, D. L. (1989). Metacyclogenesis in Leishmania promastigotes. Experimental Parasitology 69, 100–3.CrossRefGoogle ScholarPubMed
Sacks, D. L. & Perkins, P. V. (1984). Identification of an infective stage of Leishmania promastigotes. Science 223, 1417–19.CrossRefGoogle ScholarPubMed
Sacks, D. L. & Perkins, P. V. (1985). Development of infective stage Leishmania promastigotes within phlebotomine sandflies. American Journal of Tropical Medicine and Hygiene 34, 456–9.CrossRefGoogle Scholar
Sacks, D. L. & Silva, Da R. P. (1987). The generation of infective stage Leishmania major promastigotes is associated with the cell surface expression and release of a developmentally regulated glycolipid. Journal of Immunology 139, 3099–106.CrossRefGoogle ScholarPubMed
Sacks, D. L., Hieny, S. & Sher, A. (1985). Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564–9.CrossRefGoogle ScholarPubMed
Schnur, L. F., Zuckerman, A. & Greenblatt, C. L. (1972). Leishmanial serotypes as distinguished by the gel diffusion of factor excreted in vitro and in vivo. Israeli Journal of Medical Science 8, 932–42.Google ScholarPubMed
Shortt, H. E. & Swaminath, C. S. (1928). The method of feeding of Phlebotomus argentipes with relation to its bearing on the transmission of kala-azar. Indian Journal of Medical Research 15, 827–36.Google Scholar
Silva, Da R. P. & Sacks, D. L. (1987). Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infection and Immunity 55, 2802–6.CrossRefGoogle Scholar
Talamas, P. & Russell, D. G. (1989). Leishmania lipophosphoglycan (LPG) binds to the CR3, LFA-1, p150, 95 family of adhesion receptors. Journal of Cellular Biochemistry, Suppl. 13E, 158.Google Scholar
Turco, S. J. (1988). The lipophosphoglycan of Leishmania. Parasitology Today 4, 255–7.CrossRefGoogle ScholarPubMed
Walters, L. L., Modi, G. B., Tesh, R. B. & Burrage, T. (1987). Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abbonenci (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 36, 294314.CrossRefGoogle ScholarPubMed
Walters, L. L., Chaplin, G. L., Modi, G. B. & Tesh, R. B. (1989 a). Ultrastructural biology of (Leishmania Viannia) panamensis ( = Leishmania brasiliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 40, 1939.CrossRefGoogle Scholar
Walters, L. L., Modi, G. B., Chaplin, G. L. & Tesh, R. B. (1989 b). Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). American Journal of Tropical Medicine and Hygiene 40, 295317.CrossRefGoogle Scholar
Warburg, A. & Schlein, Y. (1986). The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. American Journal of Tropical Medicine and Hygiene 35, 926–30.CrossRefGoogle ScholarPubMed
Warburg, A., Hamada, G. S., Schlein, Y. & Shire, D. (1989). Scanning electron microscopy of Leishmania major in Phlebotomus papatasi. Zeitschrift für Parasitenkunde 72, 423–31.CrossRefGoogle Scholar
Williams, P. (1966). Experimental transmission of Leishmania mexicana by Lutzomyia cruciata. Annals of Tropical Medicine and Parasitology 60, 365–72.CrossRefGoogle ScholarPubMed