Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:23:00.460Z Has data issue: false hasContentIssue false

Experimental infection of two South American reservoirs with four distinct strains of Trypanosoma cruzi

Published online by Cambridge University Press:  04 February 2010

DAWN M. ROELLIG*
Affiliation:
Southeastern Cooperative Wildlife Disease Study, Department of Population Health, The University of Georgia, Athens, GA30602, USA
KATHERINE McMILLAN
Affiliation:
Southeastern Cooperative Wildlife Disease Study, Department of Population Health, The University of Georgia, Athens, GA30602, USA
ANGELA E. ELLIS
Affiliation:
Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, Athens, GA30602, USA
JOHN L. VANDEBERG
Affiliation:
Southwest Foundation for Biomedical Research and Southwest National Primate Research Center, San Antonio, TX78245, USA
DONALD E. CHAMPAGNE
Affiliation:
Department of Entomology and Center for Tropical Emerging and Global Diseases, The University of Georgia, Athens, GA30602, USA
MICHAEL J. YABSLEY
Affiliation:
Southeastern Cooperative Wildlife Disease Study, Department of Population Health, The University of Georgia, Athens, GA30602, USA D. B. Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, GA30602, USA
*
*Corresponding author: 589 D.W. Brooks Drive, Wildlife Health Building, College of Veterinary Medicine, The University of Georgia, Athens, Georgia30602, USA. E-mail: droellig@uga.edu

Summary

Trypanosoma cruzi (Tc), the causative agent of Chagas disease, is a diverse species with 2 primary genotypes, TcI and TcII, with TcII further subdivided into 5 subtypes (IIa–e). This study evaluated infection dynamics of 4 genetically and geographically diverse T. cruzi strains in 2 South American reservoirs, degus (Octodon degus) and grey short-tailed opossums (Monodelphis domestica). Based on prior suggestions of a genotype-host association, we hypothesized that degus (placental) would more readily become infected with TcII strains while short-tailed opossums (marsupial) would be a more competent reservoir for a TcI strain. Individuals (n=3) of each species were intraperitoneally inoculated with T. cruzi trypomastigotes of TcIIa [North America (NA)-raccoon (Procyon lotor) origin], TcI [NA-Virginia opossum (Didelphis virginiana)], TcIIb [South America (SA)-human], TcIIe (SA-Triatoma infestans), or both TcI and TcIIa. Parasitaemias in experimentally infected degus peaked earlier (7–14 days post-inoculation (p.i.)) compared with short-tailed opossums (21–84 days p.i.). Additionally, peak parasitaemias were higher in degus; however, the duration of detectable parasitaemias for all strains, except TcIIa, was greater in short-tailed opossums. Infections established in both host species with all genotypes, except for TcIIa, which did not establish a detectable infection in short-tailed opossums. These results indicate that both South American reservoirs support infections with these isolates from North and South America; however, infection dynamics differed with host and parasite strain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnabé, C., Yaeger, R., Pung, O. and Tibayrenc, M. (2001). Trypanosoma cruzi: A considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Experimental Parasitology 99, 7379.CrossRefGoogle Scholar
Barretto, M. P. and Ribeiro, R. D. (1979). Reservatorios silvestres do Trypanosoma cruzi. Revista doInstituto de Adolfo Lutz 39, 2526. [In Portugese]CrossRefGoogle Scholar
Briones, M. R. S., Souto, R. P., Stolf, B. S. and Zingales, B. (1999). The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Molecular and Biochemical Parasitology 104, 219232.CrossRefGoogle ScholarPubMed
Brisse, S., Verhoef, J. and Tibayrenc, M. (2001). Characterization of large and small subunit rRNA and mini-exon genes further support the distinction of six Trypanosoma cruzi lineages. International Journal for Parasitology 31, 12181226.CrossRefGoogle ScholarPubMed
Campos, R., Acuña-Retamar, M., Botto-Mahan, C., Ortiz, S., Cattan, P. E. and Solari, A. (2007). Susceptibility of Mepraia spinolai and Triatoma infestans to different Trypanosoma cruzi strains from naturally infected rodent hosts. Acta Tropica 104, 2529.CrossRefGoogle ScholarPubMed
Clark, C. G. and Pung, O. J. (1994). Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America. Molecular and Biochemical Parasitology 66, 175179.CrossRefGoogle ScholarPubMed
Coronado, X., Zulantay, I., Albrecht, H., Rozas, M., Apt, W., Ortiz, S., Rodriguez, J., Sanchez, G. and Solari, A. (2006). Variation in Trypanosoma cruzi clonal composition detected in blood patients and xenodiagnosis triatomines: implications in the molecular epidemiology of Chile. American Journal of Tropical Medicine and Hygiene 74, 10081012.CrossRefGoogle ScholarPubMed
Duran, J., Videla, M. and Apt, W. (1989). Enfermedad de Chagas en una comunidad de pequeños mamíferos simpátricos de la Reserva Nacional de Las Chinchillas. Parasitología al Día 13, 1520. [In Spanish]Google Scholar
Falla, A., Herrera, C., Fajardo, A., Montilla, M., Vallejo, G. A. and Guhl, F. (2009). Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Tropica 110, 1521.CrossRefGoogle ScholarPubMed
Galuppo, S., Bacigaluo, A., García, A., Ortiz, A., Coronado, X., Cattan, P. E. and Solari, A. (2009). Predominance of Trypanosoma cruzi genotypes in two reservoirs infected by sylvatic Triatoma infestans of an endemic area of Chile. Acta Tropica 111, 9093.CrossRefGoogle ScholarPubMed
Hall, C. A., Polizzi, C., Yabsley, M. J. and Norton, T. M. (2007). Trypanosoma cruzi prevalence and epidemiologic trends in lemurs on St. Catherines Island, Georgia. Journal of Parasitology 93, 9396.CrossRefGoogle Scholar
Herrera, L., D'Andrea, P. S., Xavier, S. C. C., Mangia, R. H., Fernandes, O. and Jansen, A. M. (2005). Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra de Capivera’ and its surroundings (Piauí, Brazil), an area endemic for Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 379388.CrossRefGoogle Scholar
Jimenez, J. and Lorca, M. (1990). Trypanosomiasis Americana en vertebrados silvestres y su relación con el vector Triatoma spinolai. Archivos de Medicina Veterinaria 22, 179183.Google Scholar
Marcet, P. L., Duffy, T., Cardinal, M. V., Burgos, J. M., Lauricella, M. A., Levin, M. J., Kitron, U., Gürtler, R. E. and Schijman, A. G. (2006). PCR-based screening and lineage identification of Trypanosoma cruzi directly from faecal samples of triatomine bugs from northwestern Argentina. Parasitology 132, 5765.CrossRefGoogle ScholarPubMed
Miles, M. A., Póvoa, M. M., de Souza, A. A., Lainson, R., Shaw, J. J. and Ketteridge, D. S. (1981). Chagas disease in the Amazon Basin: II. The distribution of Trypanosoma cruzi zymodemes 1 and 3 in Pará state, north Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 667674.CrossRefGoogle ScholarPubMed
Perlowagora-Szumlewicz, A., Muller, C. A. and de Carvalho Moreira, C. J. (1990). Studies in search of suitable experimental insect model for xenodiagnosis of hosts with Chagas' disease 4- the reflection of parasite stock in the responsiveness of different vector species to chronic infection with different Trypanosoma cruzi stocks. Revista de Saúde Pública 24, 165177.CrossRefGoogle ScholarPubMed
Pinho, A. P., Cupolillo, E., Mangia, R. H., Fernandes, O. and Jansen, A. M. (2000). Trypanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 509514.CrossRefGoogle ScholarPubMed
Póvoa, M. M., de Souza, A. A., Naiff, R. D., Arias, J. R., Naiff, M. F., Biancardi, C. B. and Miles, M. A. (1984). Chagas' disease in the Amazon Basin IV: Host records of Trypanosoma cruzi zymodemes in the States of Amazonas and Rondonia, Brazil. Annals of Tropical Medicine and Parasitology 78, 479487.CrossRefGoogle ScholarPubMed
Roellig, D. M., Brown, E. L., Barnabé, C., Tibayrenc, M., Steurer, F. J. and Yabsley, M. J. (2008). Molecular typing of Trypanosoma cruzi isolates, United States. Emerging Infectious Diseases 14, 11231125.CrossRefGoogle ScholarPubMed
Roellig, D. M., Ellis, A. E. and Yabsley, M. J. (2009). Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). International Journal for Parasitology 39, 16031610.CrossRefGoogle ScholarPubMed
Roque, A. L., Xavier, S. C. C., da Rocha, M. G., Duarte, A. C. M., D'Andrea, P. S. and Jansen, A. M. (2008). Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted Chagas disease outbreaks. American Journal of Tropical Medicine and Hygiene 79, 742749.CrossRefGoogle ScholarPubMed
Rozas, M., Botto-Mahan, C., Coronado, X., Ortiz, S., Cattan, P. E. and Solari, A. (2005). Short Report: Trypanosoma cruzi infection in wild mammals from a chagasic area of Chile. American Journal of Tropical Medicine and Hygiene 73, 517519.CrossRefGoogle ScholarPubMed
Rozas, M., Botto-Mahan, C., Coronado, X., Ortiz, S., Cattan, P. E. and Solari, A. (2007). Coexistence of Trypanosoma cruzi genotypes in wild and peridomestic mammals in Chile. American Journal of Tropical Medicine and Hygiene 77, 647653.CrossRefGoogle ScholarPubMed
Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. and Zingales, B. (1996). DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology 83, 141152.CrossRefGoogle ScholarPubMed
Spotorno, A. E., Córdova, L. and Solari, A. (2008). Differentiation of Trypanosoma cruzi I subgroups through characterization of cytochrome b gene sequences. Infection, Genetics and Evolution 8, 898900.CrossRefGoogle Scholar
Whiting, C. (1946). Contribución al studio de las reservas de parásitos de la enfermedad de Chagas en Chile. Primeros halazgos en Chile de mamíferos silvestres infestados por Trypanosoma cruzi. Revista Chilena de Higiene y Medicina Preventiva 8, 69–102. [In Spanish]Google Scholar
Yabsley, M. J., Noblet, G. P. and Pung, O. J. (2001). Comparison of serological methods and blood culture for detection of Trypanosoma cruzi infection in raccoons (Procyon lotor). Journal of Parasitology 87, 11551159.CrossRefGoogle ScholarPubMed
Yabsley, M. J., Norton, T. M., Powell, M. R. and Davidson, W. R. (2004). Molecular and serologic evidence of tick-borne ehrlichiae in three species of lemurs from St. Catherines Island, Georgia, USA. Journal of Zoo and Wildlife Medicine 35, 503509.CrossRefGoogle ScholarPubMed
Yeo, M., Acost, N., Llewellyn, M., Sánchez, H., Adamson, S., Miles, G. A., López, E., González, N., Patterson, J. S., Gaunt, M. W., de Arias, A. R. and Miles, M. A. (2005). Origins of Chagas Disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. International Journal for Parasitology 35, 225233.CrossRefGoogle ScholarPubMed