Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T06:55:27.178Z Has data issue: false hasContentIssue false

Establishment of suitable reference genes for studying relative gene expression during the transition from trophozoites to cyst-like stages and first evidences of stress-induced expression of meiotic genes in Trichomonas vaginalis

Published online by Cambridge University Press:  08 April 2021

Juliana Figueiredo Peixoto
Affiliation:
Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
Daniele Graças dos Santos
Affiliation:
Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
Lupis Ribeiro
Affiliation:
Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
Vitor Silva Cândido de Oliveira
Affiliation:
Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
Rodrigo Nunes-da-Fonseca
Affiliation:
Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
José Luciano Nepomuceno-Silva*
Affiliation:
Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
*
Author for correspondence: José Luciano Nepomuceno-Silva, E-mail: nepomuc@yahoo.com

Abstract

Trichomonas vaginalis is a parasite of the human urogenital tract and the causative agent of trichomoniasis, a sexually transmitted disease of worldwide importance. This parasite is usually found as a motile flagellated trophozoite. However, when subjected to stressful microenvironmental conditions, T. vaginalis trophozoites can differentiate into peculiar cyst-like stages, which exhibit notable physiological resistance to unfavourable conditions. Although well documented in morphological and proteomic terms, patterns of gene expression changes involved in the cellular differentiation into cyst-like stages are mostly unknown. The real-time reverse transcription polymerase chain reaction (RT-qPCR) is recognized as a sensitive and accurate method for quantification of gene expression, providing fluorescence-based data that are proportional to the amount of a target RNA. However, the reliability of relative expression studies depends on the validation of suitable reference genes, which RNAs exhibit a minimum of variation between tested conditions. Here, we attempt to determine suitable reference genes to be used as controls of invariant expression during cold-induced in vitro differentiation of T. vaginalis trophozoites into cyst-like forms. Furthermore, we reveal that the mRNA from the meiotic recombinase Dmc1 is upregulated during this process, indicating that cryptic sexual events may take place in cyst-like stages of T. vaginalis.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro/RJ, Brazil.

References

Afzan, MY and Suresh, K (2012) Pseudocyst forms of Trichomonas vaginalis from cervical neoplasia. Parasitology Research 111, 371381.CrossRefGoogle ScholarPubMed
Andersen, CL, Jensen, JL and Ørntoft, TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64, 52455250.CrossRefGoogle ScholarPubMed
Bagga, R and Arora, P (2020) Genital micro-organisms in pregnancy. Frontiers in Public Health 8, 225.CrossRefGoogle ScholarPubMed
Beri, D, Yadav, P, Devi, HRN, Narayana, C, Gadara, D and Tatu, U (2020) Demonstration and characterization of cyst-like structures in the life cycle of Trichomonas vaginalis. Frontiers in Cellular and Infection Microbiology 9, 430.CrossRefGoogle ScholarPubMed
Bradic, M and Carlton, JM (2018) Does the common sexually transmitted parasite Trichomonas vaginalis have sex? PLoS Pathogens 14, e1006831.CrossRefGoogle ScholarPubMed
Brenndörfer, M and Boshart, M (2010) Selection of reference genes for mRNA quantification in Trypanosoma brucei. Molecular and Biochemical Parasitology 172, 5255.CrossRefGoogle ScholarPubMed
Carlton, JM, Hirt, RP, Silva, JC, Delcher, AL, Schatz, M, Zhao, Q, Wortman, JR, Bidwell, SL, Alsmark, UC, Besteiro, S, Sicheritz-Ponten, T, Noel, CJ, Dacks, JB, Foster, PG, Simillion, C, Van de Peer, Y, Miranda-Saavedra, D, Barton, GJ, Westrop, GD, Müller, S, Dessi, D, Fiori, PL, Ren, Q, Paulsen, I, Zhang, H, Bastida-Corcuera, FD, Simoes-Barbosa, A, Brown, MT, Hayes, RD, Mukherjee, M, Okumura, CY, Schneider, R, Smith, AJ, Vanacova, S, Villalvazo, M, Haas, BJ, Pertea, M, Feldblyum, TV, Utterback, TR, Shu, CL, Osoegawa, K, de Jong, PJ, Hrdy, I, Horvathova, L, Zubacova, Z, Dolezal, P, Malik, SB, Logsdon, JM Jr, Henze, K, Gupta, A, Wang, CC, Dunne, RL, Upcroft, JA, Upcroft, P, White, O, Salzberg, SL, Tang, P, Chiu, CH, Lee, YS, Embley, TM, Coombs, GH, Mottram, JC, Tachezy, J, Fraser-Liggett, CM and Johnson, PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (New York, N.Y.) 315, 207212.CrossRefGoogle ScholarPubMed
Chapman, JR and Waldenström, J (2005) With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS ONE 10, e0141853.CrossRefGoogle Scholar
Cheng, WH, Huang, KY, Huang, PJ, Hsu, JH, Fang, YK, Chiu, CH and Tang, P (2015) Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasite & Vectors 8, 393.CrossRefGoogle ScholarPubMed
Cleveland, LR (1956) Brief accounts of the sexual cycles of the flagellates of Cryptocercus. Journal of Protozoology 3, 161180.CrossRefGoogle Scholar
Dias-Lopes, G, Saboia-Vahia, L, Margotti, ET, Fernandes, NS, Castro, CLF, Oliveira-Júnior, FO, Peixoto, JF, Britto, C, Silva-Filho, FC, Cuervo, P and Jesus, JB (2017) Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells. Memórias do Instituto Oswaldo Cruz 112, 664673.CrossRefGoogle ScholarPubMed
Dias-Lopes, G, Wiśniewski, JR, de Souza, NP, Vidal, VE, Padrón, G, Britto, C, Cuervo, P and De Jesus, JB (2018) In-depth quantitative proteomic analysis of trophozoites and pseudocysts of Trichomonas vaginalis. Journal of Proteome Research 17, 37043718.CrossRefGoogle ScholarPubMed
dos Santos, O, de Vargas Rigo, G, Frasson, AP, Macedo, AJ and Tasca, T (2015) Optimal reference genes for gene expression normalization in Trichomonas vaginalis. PLoS ONE 10, e0138331.CrossRefGoogle ScholarPubMed
Fang, YK, Huang, KY, Huang, PJ, Lin, R, Chao, M and Tang, P (2015) Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection 48, 662675.CrossRefGoogle ScholarPubMed
Goodenough, U, Lin, H and Lee, JH (2007) Sex determination in Chlamydomonas. Seminars in Cell & Developmental Biology 18, 350361.CrossRefGoogle ScholarPubMed
Gould, SB, Woehle, C, Kusdian, G, Landan, G, Tachezy, J, Zimorski, V and Martin, WF (2013) Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International Journal for Parasitology 43, 707719.CrossRefGoogle ScholarPubMed
Hernández-García, MS, Miranda-Ozuna, JFT, Salazar-Villatoro, L, Vázquez-Calzada, C, Ávila-González, L, González-Robles, A, Ortega-López, J and Arroyo, R (2019) Biogenesis of autophagosome in Trichomonas vaginalis during macroautophagy induced by rapamycin-treatment and iron or glucose starvation conditions. Journal of Eukaryotic Microbiology 66, 654669.Google ScholarPubMed
Hofstatter, PG and Lahr, DJG (2019) All eukaryotes are sexual, unless proven otherwise: many so-called asexuals present meiotic machinery and might be able to have sex. Bioessays 41, e1800246.CrossRefGoogle ScholarPubMed
Hogue, MJ (1943) The effect of Trichomonas vaginalis on tissue-culture cells. American Journal of Hygiene 37, 142152.Google Scholar
Horváthová, L, Šafaríková, L, Basler, M, Hrdy, I, Campo, NB, Shin, JW, Huang, KY, Huang, PJ, Lin, R, Tang, P and Tachezy, J (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biology and Evolution 4, 10171029.CrossRefGoogle ScholarPubMed
Huang, KY, Huang, PJ, Ku, FM, Lin, R, Alderete, JF and Tang, P (2012) Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infection and Immunity 80, 39003911.CrossRefGoogle ScholarPubMed
Huang, KY, Chen, YY, Fang, YK, Cheng, WH, Cheng, CC, Chen, YC, Wu, TE, Ku, FM, Chen, SC, Lin, R and Tang, P (2014) Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochimica et Biophysica Acta 1840, 5364.CrossRefGoogle ScholarPubMed
Huang, KY, Chen, RM, Lin, HC, Cheng, WH, Lin, HA, Lin, WN, Huang, PJ, Chiu, CH and Tang, P (2019) Potential role of autophagy in proteolysis in Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection 52, 336344.CrossRefGoogle ScholarPubMed
Hussein, EM and Atwa, MM (2008) The infectivity role of Trichomonas vaginalis pseudocysts inoculated intra-vaginally in mice. Journal of the Egyptian Society of Parasitology 38, 749762.Google ScholarPubMed
Kusdian, G, Woehle, C, Martin, WF and Gould, SB (2013) The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cellular Microbiology 15, 17071721.Google ScholarPubMed
Lin, WC, Li, SC, Lin, WC, Shin, JW, Hu, SN, Yu, XM, Huang, TY, Chen, SC, Chen, HC, Chen, SJ, Huang, PJ, Gan, RR, Chiu, CH and Tang, P (2009 a) Identification of microRNA in the protist Trichomonas vaginalis. Genomics 93, 487493.CrossRefGoogle ScholarPubMed
Lin, WC, Huang, KY, Chen, SC, Huang, TY, Chen, SJ, Huang, PJ and Tang, P (2009 b) Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis. Parasitology Research 105, 16831689.CrossRefGoogle ScholarPubMed
Lun, ZR and Gajadhar, AA (1999) A simple and rapid method for staining Tritrichomonas foetus and Trichomonas vaginalis. Journal of Veterinary Diagnostic Investigation 11, 471474.CrossRefGoogle ScholarPubMed
Malik, SB, Pightling, AW, Stefaniak, LM, Schurko, AM and Logsdon, JM Jr (2008) An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE 3, e2879.CrossRefGoogle Scholar
Małyszko, E and Januszko, T (1991) Detection of Trichomonas vaginalis in men. Polski Tygodnik Lekarski 46, 997999.Google ScholarPubMed
Marcial-Quino, J, Fierro, F, De la Mora-De la Mora, I, Enríquez-Flores, S, Gómez-Manzo, S, Vanoye-Carlo, A, Garcia-Torres, I, Sierra-Palacios, E and Reyes-Vivas, H (2016) Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR. Gene 581, 2130.CrossRefGoogle ScholarPubMed
Masha, SC, Cools, P, Sanders, EJ, Vaneechoutte, M and Crucitti, T (2019) Trichomonas vaginalis and HIV infection acquisition: a systematic review and meta-analysis. Sexually Transmitted Infections 95, 3642.CrossRefGoogle ScholarPubMed
Matta, BP, Bitner-Mathé, BC and Alves-Ferreira, M (2011) Getting real with real-time qPCR: a case study of reference gene selection for morphological variation in Drosophila melanogaster wings. Development Genes and Evolution 221, 4957.CrossRefGoogle ScholarPubMed
Miranda-Ozuna, JFT, Rivera-Rivas, LA, Cárdenas-Guerra, RE, Hernández-García, MS, Rodríguez-Cruz, S, González-Robles, A, Chavez-Munguía, B and Arroyo, R (2019) Glucose-restriction increases Trichomonas vaginalis cellular damage towards HeLa cells and proteolytic activity of cysteine proteinases (CPs), such as TvCP2. Parasitology 146, 11561166.CrossRefGoogle Scholar
Mitchell, AP (1994) Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiological Reviews 58, 5670.CrossRefGoogle ScholarPubMed
Newman, L, Rowley, J, Hoorn, SV, Wijesooriya, NS, Unemo, M, Low, N, Stevens, G, Gottlieb, S, Kiarie, J and Temmerman, M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10, e0143304.CrossRefGoogle ScholarPubMed
Nonis, A, De Nardi, B and Nonis, A (2014) Choosing between RT-qPCR and RNA-seq: a back-of-the-envelope estimate towards the definition of the break-even-point. Analytical and Bioanalytical Chemistry 406, 35333536.Google ScholarPubMed
Ouakad, M, Bahi-Jaber, N, Chenik, M, Dellagi, K and Louzir, H (2007) Selection of endogenous reference genes for gene expression analysis in Leishmania major developmental stages. Parasitology Research 101, 473477.CrossRefGoogle ScholarPubMed
Pereira-Neves, A and Benchimol, M (2009) Tritrichomonas foetus: budding from multinucleated pseudocysts. Protist 160, 536551.CrossRefGoogle ScholarPubMed
Pereira-Neves, A, Ribeiro, KC and Benchimol, M (2003) Pseudocysts in trichomonads–new insights. Protist 154, 313329.CrossRefGoogle ScholarPubMed
Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.CrossRefGoogle ScholarPubMed
Pfaffl, MW, Tichopad, A, Prgomet, C and Neuvians, TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters 26, 509515.CrossRefGoogle ScholarPubMed
Poxleitner, MK, Carpenter, ML, Mancuso, JJ, Wang, CJR, Dawson, SC and Cande, WZ (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science (New York, N.Y.) 319, 15301533.CrossRefGoogle ScholarPubMed
Ram, Y and Hadany, L (2016) Condition-dependent sex: who does it, when and why? Philosophical Transactions of the Royal Society of London B Biological Sciences 371, 20150539.CrossRefGoogle Scholar
Rocha, DA, de Andrade Rosa, I, Urbina, JA, de Souza, W and Benchimol, M (2014) The effect of 3-(biphenyl-4-yl)-3-hydoxyquinuclidine (BPQ-OH) and metronidazole on Trichomonas vaginalis: a comparative study. Parasitology Research 113, 21852197.CrossRefGoogle ScholarPubMed
Schumann, JA and Plasner, S (2021) Trichomoniasis. In StatPearls. Treasure Island, FL: StatPearls Publishing, pp. 111. Available at https://www.ncbi.nlm.nih.gov/books/NBK534826.Google ScholarPubMed
Schurko, AM and Logsdon, JM Jr. (2008) Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579589.CrossRefGoogle ScholarPubMed
Sharan, RN, Vaiphei, ST, Nongrum, S, Keppen, J and Ksoo, M (2015) Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cellular Oncology (Dordrecht) 38, 419431.CrossRefGoogle ScholarPubMed
Silver, N, Best, S, Jiang, J and Thein, SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7, 33.CrossRefGoogle ScholarPubMed
Speijer, D, Lukeš, J and Eliáš, M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the USA 112, 88278834.CrossRefGoogle ScholarPubMed
Tsotetsi, TN, Collins, NE, Oosthuizen, MC and Sibeko-Matjila, KP (2018) Selection and evaluation of housekeeping genes as endogenous controls for quantification of mRNA transcripts in Theileria parva using quantitative real-time polymerase chain reaction (qPCR). PLoS ONE 13, e0196715.CrossRefGoogle Scholar
Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A and Speleman, F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, RESEARCH0034.CrossRefGoogle ScholarPubMed
Vogel, C and Marcotte, EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews in Genetics 13, 227232.CrossRefGoogle ScholarPubMed
Wallin, M and Strömberg, E (1995) Cold-stable and cold-adapted microtubules. International Review of Cytology 157, 131.CrossRefGoogle ScholarPubMed
Yan, HZ and Liou, RF (2006) Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology 43, 430438.CrossRefGoogle ScholarPubMed
Yeh, YM, Huang, KY, Richie-Gan, RC, Huang, HD, Wang, TC and Tang, P (2013) Phosphoproteome profiling of the sexually transmitted pathogen Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection 46, 366373.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Peixoto et al. supplementary material

Peixoto et al. supplementary material

Download Peixoto et al. supplementary material(PDF)
PDF 1.2 MB