Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T00:36:42.707Z Has data issue: false hasContentIssue false

Effects of irradiation on surface carbohydrates of larvae of Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

A. Wales
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
S.-I. Fukumoto
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
M. F. Otieno
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
J. R. Kusel
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

Summary

Ultra-violet irradiated larvae of Schistosoma mansoni stimulate high levels of resistance to challenge infection in experimental animals. In the experiments presented here, the binding patterns of antisera specific for the cercarial glycocalyx, and of various lectins, demonstrate that u.v. irradiation causes a pronounced modification of the carbohydrate antigens expressed at the surface of cercariae and newly transformed schistosomula.These alterations were dependent on the irradiation dose, and on the batch of cercariae used in each experiment. Our results strongly suggest that the changes in carbohydrate antigens consequent upon u.v. irradiation may be important in generating the enhanced immunogenicity of irradiated cercariae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, S. & Elder, J. M. (1985). Carbohydrate dramatically influences immune reactivity of antisera to glycoprotein antigens. Science 226, 1328–30.CrossRefGoogle Scholar
Bickle, Q. D., Taylor, M. G., Doenhoff, M. J. & Nelson, G. S. (1979). Immunization of mice with gamma-irradiated intramuscularly injected schistosomula of Schistosoma mansoni, Parasitology 79, 209–22.CrossRefGoogle ScholarPubMed
Caulfield, J. P., Cianci, C. M. L., McDiarmid, S. S., Suyemitsu, T. & Schmid, K. (1987). Ultrastructure, carbohydrate and amino acid analysis of two preparations of the cercarial glycocalyx of Schistosoma mansoni. Journal of Parasitology 73, 514–22.CrossRefGoogle ScholarPubMed
Clegg, J. A. & Smithers, S. R. (1972). The effects of immune rhesus monkey serum on schistosomula of Schistosoma mansoni during cultivation in vitro. International Journal for Parasitology 2, 7998.CrossRefGoogle ScholarPubMed
Colley, D. G. & Wikel, S. K. (1974). Schistosoma mansoni: simplified method for the production of schistosomules. Experimental Parasitology 35, 4451.CrossRefGoogle ScholarPubMed
Danno, K., Takigawa, M. & Horio, T. (1984). Alterations in lectin binding to epidermis following treatment with 8-methoxypsoralen plus long-wave ultraviolet radiation. Journal of Investigative Dermatology 82, 176–9.CrossRefGoogle ScholarPubMed
Dean, D. A. (1983). Schistosoma and related genera: acquired resistance in mice. Experimental Parasitology 55, 1104.CrossRefGoogle ScholarPubMed
Feizi, T. & Childs, R. A. (1987). Carbohydrates as antigenic determinants of glycoproteins. Biochemical Journal 245, 111.CrossRefGoogle ScholarPubMed
Goldberg, A. L. & St John, A. C. (1976). Intracellular protein degradation in mammalian and bacterial cells. Part II. Annual Review of Biochemistry 45, 747803.CrossRefGoogle ScholarPubMed
Goldstein, I. J., Hammarström, S. & Sunblad, G. (1975). Precipitation and carbohydrate-binding specificity studies on wheatgerm agglutinin. Biochimica et Biophysica Acta 405, 5361.CrossRefGoogle Scholar
Grzych, J. M., Dissous, C., Capron, M., Torres, S., Lambert, P. H. & Capron, A. (1987). Schistosoma mansoni shares a protective epitope with keyhole limpet haemocyanin. Journal of Experimental Medicine 165, 865–78.CrossRefGoogle Scholar
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. International Journal for Parasitology 3, 1325.CrossRefGoogle ScholarPubMed
Johnstone, A. & Thorpe, R. (1985). Immunochemistry in Practice. London: Blackwell Scientific Publications.Google Scholar
Jones, J. T. & Kusel, J. R. (1989). Intraspecific variation in Schistosoma mansoni. Parasitology Today 5, 37–9.CrossRefGoogle ScholarPubMed
Köteles, G. J., Kubasova, T. & Vanya, L. (1976). 3H-concanavalin A binding of X-irradiated human fibroblasts. Nature, London 259, 207–8.CrossRefGoogle ScholarPubMed
McConnell, I., Munro, A. & Wald Ann, H. (1981). Autoimmune disease. In The Im nune System: a Course on the Molecular and Cellular Basis of Immunity, pp. 272–82. Oxford and London: Blackwell Scientific Publications.Google Scholar
McLaren, D. J. & Smithers, S. R. (1987). The immune response to schistosomes in experimental hosts. In The Biology of Schistosomes: from Genes to Latrines (ed. Rollinson, D. & Simpson, A. J. G.), pp. 233–64. London and New York: Academic Press.Google Scholar
Mitchel, R. E. J.(1981). Loss of covalently linked lipid as the mechanism for radiation-induced release of membrane-bound polysaccharide and exonuclease from Micrococcus radiodurans. Radiation Research 87, 341–9.CrossRefGoogle ScholarPubMed
Moullier, P., Daveloose, D., Dubos, M., Leterrier, F. & Hoebeke, J. (1986). Effect of in vivo gamma-irradiation on the binding of wheatgerm agglutinin to lymphocyte plasma membranes. Biochimica et Biophysica Acta 883, 407–12.CrossRefGoogle Scholar
Nanduri, J., Dennis, J. E., Rosenberry, T. L., Mahmoud, A. A. F. & Tartakoff, A. M. (1991). Glycocalyx of bodies versus tails of Schistosomas mansoni cercariae. Lectin binding, size, charge, and electron microscopic characterization. Journal of Biological Chemistry 266, 1341–7.CrossRefGoogle ScholarPubMed
Pearce, E. J. & McLaren, D. J. (1983). Schistosoma mansoni: in vivo and in vitro studies of immunity using the guinea-pig model. Parasitology 87, 465–79.CrossRefGoogle ScholarPubMed
Phillips, G. O. (1970). The effects of radiation on carbohydrates. In The Carbohydrates: Chemistry and Biochemistry (ed. Pigman, W. & Horton, D.), pp. 12171297. London and New York: Academic Press.Google Scholar
Rademacher, T. W., Parekh, R. B. & Dwek, R. A. (1988). Glycobiology. Annual Review of Biochemistry 57, 785838.CrossRefGoogle ScholarPubMed
Roitt, I. (1984). Autoimmunity. In Essential Immunology pp. 311–52. London: Blackwell Scientific.Google Scholar
Samuelson, J. C. & Caulfield, J. P. (1985). The cercarial glycocalyx of Schistosoma mansoni. Journal of Cell Biology 100, 1423–34.CrossRefGoogle ScholarPubMed
Sher, A. & Benno, D. (1982). Decreasing immunogenicity of schistosome larvae. Parasite Immunology 4, 101–7.CrossRefGoogle ScholarPubMed
Smith, M. A. & Clegg, J. A. (1979). Different levels of immunity to Schistosoma mansoni in the mouse: the role of variant cercariae. Parasitology 78, 311–21.CrossRefGoogle ScholarPubMed
Smithers, S. R. & Terry, R. L. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Smithers, S. R. & Terry, R. J. (1967). Resistance to experimental infection with Schistosoma mansoni in rhesus monkeys, induced by the transfer of adult worms. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 517–33.CrossRefGoogle ScholarPubMed
Vieira, L. Q., Gazzinelli, G., Kusel, J. R., De Souza, C. P. S. & Colley, D. G. (1986). Inhibition of human peripheral blood mononuclear cell proliferative responses by released materials from Schistosoma mansoni cercariae. Parasite Immunology 8, 333–43.CrossRefGoogle ScholarPubMed
Vieira, L. Q. & Kusel, J. R. (1991). Schistosoma mansoni and Biomphalaria glabrata have some common epitopes. I. Common epitopes are present on the surface of early stages of S. mansoni. Journal of Comparative Biochemistry and Physiology 100B, 507–16.Google ScholarPubMed
von Sonntag, C. (1987). The Chemical Basis of Radiation Biology. London and New York: Taylor and Francis.Google Scholar