Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T16:50:19.928Z Has data issue: false hasContentIssue false

Effects of habitat fragmentation on wild mammal infection by Trypanosoma cruzi

Published online by Cambridge University Press:  26 July 2007

V. C. VAZ
Affiliation:
Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Departamento de Medicina Tropical, Instituto Oswaldo Cruz, Av. Brasil 4365, P.O. Box 926, Rio de Janeiro, 21040-360, RJ, Brasil Laboratório de Biologia de Tripanosomatídeos, Departamento de Protozoologia, Instituto Oswaldo Cruz Programa de Pós-Graduação em Biologia Prasitária, Instituto Oswaldo Cruz
P. S. D'ANDREA
Affiliation:
Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Departamento de Medicina Tropical, Instituto Oswaldo Cruz, Av. Brasil 4365, P.O. Box 926, Rio de Janeiro, 21040-360, RJ, Brasil
A. M. JANSEN*
Affiliation:
Programa de Pós-Graduação em Biologia Prasitária, Instituto Oswaldo Cruz
*
*Corresponding author: Departamento de Protozoologia, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos C.P. 926, 21040-360, Rio de Janeiro/RJ, Brazil. Tel: and Fax: +55 21 2560 6572. E-mail: jansen@ioc.fiocruz.br

Summary

Expansion of human activities frequently results in habitat fragmentation, a phenomenon that has been widely recognized in the last decades as one of the major threats to world's biodiversity. The transformation of a continuous forest into a fragmented area results in a hyper-dynamic landscape with unpredictable consequences to overall ecosystem health. The effect of the fragmentation process on Trypanosoma cruzi infection among small wild mammals was studied in an Atlantic Rain Forest landscape. Comparing continous forest to fragmented habitat, marsupials were less abundant than rodents in the continuous landscape. An overall decrease in small wild mammal richness was observed in the smaller fragments. An anti-T. cruzi seroprevalence of 18% (82/440) was deteced by immunofluorescence assay. Moreover, this seroprevalence was higher in the fragmented habitat than in the continuous forest. According to the collected data, 3 main factors seem to modulate infection by T. cruzi in small wild mammals: (i) habitat fragmentation; (ii) biodiversity loss; (iii) increase of marsupial abundance in mammal communities. Furthermore, an extremely mild controlled infection by T. cruzi was detected since no patent parasitaemia could be detected in fresh blood samples, and no parasites were isolated by haemoculture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, B. F., Keesing, F. and Ostfeld, R. S. (2003). Effects of forest fragmentation on Lyme Disease risk. Conservation Biology 17, 267272.CrossRefGoogle Scholar
Camargo, M. E. (1966). Fluorescent antibody test for the serodiagnosis of American Trypanosomiasis: technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test. Revista do Instituto de Medicina Tropical de São Paulo 8, 227234.Google Scholar
Castro, E. V. and Fernandez, F. A. S. (2004). Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biological Conservation 119, 7380.CrossRefGoogle Scholar
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Reviews of Ecology and Evolution Systematics 34, 487515.CrossRefGoogle Scholar
Gillespie, T. R. and Chapman, C. A. (2006). Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology 20, 441448.CrossRefGoogle ScholarPubMed
Gillespie, T. R., Chapman, C. A. and Greiner, E. C. (2005). Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology 42, 699707.CrossRefGoogle Scholar
Herrera, L., D'Andrea, P. S., Xavier, S. C. C., Mangia, R. H., Fernades, O. and Jansen, A. M. (2005). Trypanosoma cruzi infection in wild mammals of the National Park Serra da Capivara and its surroundings (Piauí, Brazil), an area endemic for Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 379388.CrossRefGoogle Scholar
Hudson, P. J., Dobson, A. P. and Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution 21, 381385.CrossRefGoogle Scholar
Jansen, A. M., Pinho, A. P. S., Lisboa, C. V., Cupollito, E., Mangia, R. H. and Fernandes, O. (1999). The sylvatic cycle of Trypanosoma cruzi: a still unsolved puzzle. Memórias do Instituto Oswaldo Cruz 94 (Suppl I), 203204.CrossRefGoogle ScholarPubMed
Kunz, E., Matz-Resing, K., Stolte, N., Hamilton, P. B. and Kaup, F. J. (2002). Reactivation of a Trypanosoma cruzi infection in a Rhesus Monkey (Macaca mulatta) experimentally infected with SIV. Veterinary Pathology 39, 721725.CrossRefGoogle Scholar
Lisboa, C. V., Mangia, R. H., De Lima, N. R. C., Martins, A., Dietz, J., Baker, A. J., Ramon-Miranda, C. R., Ferreira, L. F., Fernandes, O. and Jansen, A. M. (2004). Distinct pattrens of Trypanosoma cruzi infection in Leontopithecus rosalia in distinct Atlantic Coastal Rainforest fragments in Rio de Janeiro – Brazil. Parasitology 129, 703711.CrossRefGoogle Scholar
LoGiudice, K., Ostfeld, R. S., Schimidt, K. A. and Keesing, F. (2003). The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences, USA 100, 567571.CrossRefGoogle ScholarPubMed
Lomolino, M. V. and Weiser, M. D. (2001). Towards a more general species-area relationship: diversity on all islands, great and small. Journal of Biogeography 28, 431445.CrossRefGoogle Scholar
McArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton University Press, New Jersey, USA.Google Scholar
McKay, D. M. (2006). The beneficial helminth parasite? Parasitology 132, 112.CrossRefGoogle ScholarPubMed
McMichael, A. J. (2004). Environmental and social influence on emerging infectious diseases: past, present and future. Philosophical Transactions of Royal Society of London 359, 10491058.CrossRefGoogle Scholar
Olifiers, N., Gentile, R. and Fiszon, J. T. (2005). Relation between small mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Brazilian Journal of Biology 65, 495501.CrossRefGoogle ScholarPubMed
Oliveira-Filho, A. T. and Fontes, M. A. L. (2000). Patterns of floristic differentiation among Atlantic Forest in Southeastern Brazil and the influence of climate. Biotropica 32, 793810.CrossRefGoogle Scholar
Pardini, R. (2004). Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodiversity and Conservation 13, 25672586.CrossRefGoogle Scholar
Pardini, R., Marques de Souza, S., Braga-Neto, R. and Metzger, J. P. (2005). The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological Conservation 124, 253266.CrossRefGoogle Scholar
Pavlovsky, E. N. (1966). Natural Nidality of Transmissible Diseases, with Special Reference to the Landscape Epidemiology of Zooanthroponoses. University of Illinois Press, Urbana, USA.Google Scholar
Pinho, A. P., Cupollito, E., Mangia, R. H., Fernandes, O. and Jansen, A. M. (2000). Tripanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 509514.CrossRefGoogle Scholar
Poulin, R. and Mouillot, D. (2005). Combining phylogenetic and ecological information into a new index of host specificity. Journal of Parasitology 91, 511514.CrossRefGoogle ScholarPubMed
Redeker, S., Andersen, L. W., Pertoldi, C., Madsen, A. B., Jensen, T. S. and Jorgensen, J. M. (2006). Genetic structure, habitat fragmentation and bottlenecks in Danish bank voles (Clethrionomys glareolus). Mammalian Biology 71, 144158.CrossRefGoogle Scholar
Ruedas, L. A., Salazar-Bravo, J., Tinnin, D. S., Armién, B., Cáceres, L., Garcia, A., Ávila Diaz, M., Gracia, F., Suzán, G., Peters, C. J., Yates, T. L. and Mills, J. M. (2004). Community ecology of small mammal populations in Panamá following an outbreak of hantavirus pulmonary syndrome. Journal of Vector Ecology 29, 177191.Google ScholarPubMed
Schmidt, K. A. and Ostfeld, R. S. (2001). Biodiversity and the dilution effect in disease ecology. Ecology 82, 609619.CrossRefGoogle Scholar