Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T06:25:25.390Z Has data issue: false hasContentIssue false

The effect of temperature on times to hatching of eggs of the nematode Ostertagia circumcincta

Published online by Cambridge University Press:  06 April 2009

R. R. Young
Affiliation:
CSIRO Animal Health Research Laboratory, Private Bag No. 1, P.O. Parkville, Victoria 3052
N. Anderson
Affiliation:
CSIRO Animal Health Research Laboratory, Private Bag No. 1, P.O. Parkville, Victoria 3052
D. Overend
Affiliation:
Victorian Department of Agriculture, Regional Veterinary Laboratory, Benalla, Victoria 3672
R. L. Tweedie
Affiliation:
CSIRO Division of Mathematics and Statistics, P.O. Box 1965, Canberra City, A.C.T., 2601
K. W. J. Malafant
Affiliation:
CSIRO Division of Mathematics and Statistics, P.O. Box 1965, Canberra City, A.C.T., 2601
G. A. N. Preston
Affiliation:
Gas and Fuel Corporation of Victoria, 171 Flinders Street, Melbourne, Victoria 3000

Summary

A delayed gamma distribution satisfactorily described the distribution of times to hatching of Ostertagia circumcincta eggs incubated in 0·1% saline at temperatures between 6 and 20 °C. Below 6 °C hatching of eggs was extremely variable. The relationship between rates of development and temperature within the range 10 to 20 °C was more closely described by a non-linear function than a linear one. The non-linear function was incorporated into a temperature summation equation which satisfactorily predicted the hatching of eggs incubated under conditions of alternating temperatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, F. L., Levine, N. D. & Boatman, P. A. (1970). Survival of third stage Trichostrongylus colubriformis larvae on pasture. Journal of Parasitology 56, 209–32.CrossRefGoogle Scholar
Andrewartha, H. G. & Birch, L. C. (1954). The Distribution and Abundance of Animals. Chicago and London: The University of Chicago Press.Google Scholar
Ashford, J. R., Read, K. L. Q. & Vickers, G. G. (1970). A system of stochastic models applicable to studies of animal population dynamics. Journal of Animal Ecology 39, 2950.CrossRefGoogle Scholar
Birch, L. C. (1942). The influence of temperatures above the developmental zero on the development of the eggs of Austroicetes cruciata Sauss. (Orthoptera). Australian Journal of Experimental Biology and Medical Science 20, 1725.CrossRefGoogle Scholar
Bradshaw, W. E. (1974). Phenology and seasonal modeling in insects. In Phenology and Seasonality Modeling, vol 8 (ed. Lieth, H.), pp. 127–137. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Crofton, H. D. (1965). Ecology and biological plasticity of sheep nematodes. I. The effect of temperature on the hatching of eggs of some nematode parasites of sheep. Cornell Veterinarian 55, 242–50.Google ScholarPubMed
Crofton, H. D. & Whitlock, J. H. (1965 a). Ecology and biological plasticity of sheep nematodes. III. Studies on Ostertagia circumcincta (Stadelmann, 1894). Cornell Veterinarian 55, 259–62.Google Scholar
Crofton, H. D. & Whitlock, J. H. (1965 b). Ecology and biological plasticity of sheep nematodes. IV. The biological significance of temperature × time hatching curves for eggs of sheep nematodes. Cornell Veterinarian 55, 263–74.Google ScholarPubMed
Crofton, H. D. & Whitlock, J. H. (1965 c). Ecology and biological plasticity of sheep nematodes. V. The relationship between egg volume and hatching time. Cornell Veterinarian 55, 274–9.Google ScholarPubMed
Crofton, H. D., Whitlock, J. H. & Glazer, R. A. (1965). Ecology and biological plasticity of sheep nematodes. II. Genetic × environmental plasticity in Haemonchus contortus (Rud. 1803). Cornell Veterinarian 55, 251–8.Google ScholarPubMed
Grainger, J. N. R. (1958). First stages in the adaptation of poikilotherms to temperature change. In Physiological Adaptation, (ed. Prosser, C. L.), pp. 7991. Washington, D.C.: American Physiological Society.Google Scholar
Idso, S. B., Jackson, R. D. & Reginato, R. J. (1978). Extending the ‘degree day’ concept of plant phenological development to include water stress effects. Ecology 59, 431–3.CrossRefGoogle Scholar
Jones, F. G. W. (1975). Accumulated temperature and rainfall as measures of nematode development and activity. Nematologica 21, 6270.CrossRefGoogle Scholar
Le Jambre, L. F. & Whitlock, J. H. (1973). Optimum temperature for egg development of phenotypes in Haemonchus contortus cayugensis as determined by Arrhenius diagrams and Sacher's entropy function. International Journal for Parasitology 3, 299310.CrossRefGoogle Scholar
Levine, N. D. (1963). Weather, climate and the bionomics of ruminant nematode larvae. Advances in Veterinary Science 8, 215–61.Google ScholarPubMed
Michel, J. F. (1976). The epidemiology and control of some nematode infections in grazing animals. Advances in Parasitology 14, 355–97.CrossRefGoogle ScholarPubMed
Read, K. L. Q. & Ashford, J. R. (1968). A system of models for the life-cycle of a biological organism. Biometrika 55, 211–21.CrossRefGoogle ScholarPubMed
Sacher, G. A. (1967). The complementarity of entropy terms for the temperature-dependence of development and ageing. Annals of the New York Academy of Sciences 138, 680712.CrossRefGoogle Scholar
Silverman, P. H. & Campbell, J. A. (1959). Studies on parasitic worms of sheep in Scotland. I. Embryonic and larval development of Haemonchus contortus at constant conditions. Parasitology 49, 2338.CrossRefGoogle ScholarPubMed
Schuh, H. J. & Tweedie, R. L. (1979). Parameter estimation using transform estimation in time-evolving models. Mathematical Biosciences 45, 3767.CrossRefGoogle Scholar
Tallis, G. M. & Donald, A. D. (1970). Further models for the distribution on pasture of infective larvae of the strongyloid nematode parasites of sheep. Mathematical Biosciences 7, 179–90.CrossRefGoogle Scholar
Waller, P. J. & Donald, A. D. (1970). Egg size and dessication survival in Trichostrongylus colubriformis (Nematoda: Trichostrongylidae). Parasitology 61, 205–9.CrossRefGoogle ScholarPubMed
Webb, E. K. (1975). Evaporation from catchments. In Prediction in Catchment Hydrology, (ed. Chapman, T. G. and Dunin, F. X.), pp. 203236. Canberra: Australian Academy of Science.Google Scholar
Whitlock, H. V. (1959). The recovery and identification of the first stage larvae of sheep nematodes. Australian Veterinary Journal 35, 310–16.CrossRefGoogle Scholar
Whitlock, J. H., Crofton, H. D. & Robson, D. S. (1969). Data analysis of hyperbolas derived from ecological observations. Cornell Veterinarian 59, 439–52.Google Scholar
Wilson, A. G. L., Lewis, T. & Cunningham, R. B. (1979). Overwintering and spring emergence of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in the Namoi Valley, New South Wales. Bulletin of Entomological Research 69, 97109.CrossRefGoogle Scholar
Young, R. R., Nicholson, R. M., Tweedie, R. L. & Schuh, H.-J. (1980). Quantitative modelling and prediction of development times of the free-living stages of Ostertagia ostertagi under controlled and field conditions. Parasitology 81,CrossRefGoogle ScholarPubMed