Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T06:05:48.627Z Has data issue: false hasContentIssue false

Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis

Published online by Cambridge University Press:  06 June 2017

P. KUMARI
Affiliation:
College of Biotechnology, DUVASU, Mathura – 281 001, U.P., India
R. NIGAM
Affiliation:
College of Biotechnology, DUVASU, Mathura – 281 001, U.P., India
A. SINGH
Affiliation:
Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India
U. P. NAKADE
Affiliation:
Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India
A. SHARMA
Affiliation:
Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India
S. K. GARG
Affiliation:
Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India
S. K. SINGH*
Affiliation:
Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India
*
*Corresponding author: Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura – 281 001, U.P., India. E-mail: pshankervet@gmail.com

Summary

Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akilov, O. E. and Mumcuoglu, K. Y. (2004). Immune response in demodicosis. European Academy of Dermatology and Venereology 18, 440444.CrossRefGoogle ScholarPubMed
Beugnet, F., Halos, L., Larsen, D. and de Vos, C. (2016). Efficacy of oral afoxolaner for the treatment of canine generalised demodicosis. Parasite 23, 14. doi: 10.1051/parasite/2016014.CrossRefGoogle ScholarPubMed
Da Silva, A. S., Pimentel, V. C., Fiorenza, A. M., França, R. T., Tonin, A. A., Jaques, J. A., Leal, C. A., Da Silva, C. B., Morsch, V., Sschetinger, M. R., Lopes, S. T. and Monteiro, S. G. (2011). Activity of cholinesterases and adenosine deaminase in blood and serum of rats experimentally infected with Trypanosoma cruzi . Annals of Tropical Medicine and Parasitology 105, 385391.Google Scholar
Das, U. N. (2007). Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Medical Science Monitor 13, 214221.Google Scholar
De Bosschere, H., Casaer, J., Neukermans, A., Baert, K., Ceulemans, T., Tavernier, P. and Roels, S. (2007). Severe alopecia due to demodicosis in roe deer (Capreolus capreolus) in Belgium. Veterinary Journal 174, 665668.CrossRefGoogle ScholarPubMed
D'Elia Zanella, L. G., Chies, A. B., Spadella, M. A., Therezo, A. L., Rossignoli Pde, S., Frei, F. and Martins, L. P. (2014). The enigmatic role of cholinergic reflex in the pathogenesis of Chagas disease. Parasitology Research 113, 21132120.Google Scholar
Felix, A. O. C., Guiot, E. G., Stein, M., Felix, S. R., Silva, E. F. and Nobre, M. O. (2013). Comparison of systemic interleukin 10 concentrations in healthy dogs and those suffering from recurring and first time Demodex canis infestations. Veterinary Parasitology 193, 312315.Google Scholar
Ferrer, L., Ravera, I. and Silbermayr, K. (2014). Immunology and pathogenesis of canine demodicosis. Veterinary Dermatology 25, 427465.Google Scholar
Forton, F. M. (2012). Papulopustular rosacea, skin immunity and Demodex: pityriasis folliculorum as a missing link. European Academy of Dermatology and Venereology 26, 1928.Google Scholar
Fukata, T., Fuoki, S., Yoshikawa, H., Kambayashi, Y., Kito, K. and Kitagawa, H. (2005). Significance of the CD4/CD8 lymphocytes ratio in dogs suffering from demodicosis. Journal of the Japan Veterinary Medical Association 58, 113116.Google Scholar
Gortel, K. (2006). Update on canine demodicosis. Veterinary Clinics of North America: Small Animal Practice 36, 229241.CrossRefGoogle ScholarPubMed
Miller, W. H., Griffin, C. E. and Campbell, K. L. (2013). Parasitic diseases. In Muller and Kirk's Small Animal Dermatology, 7th Edn (ed. Miller, W. H., Griffin, C. E. and Campbell, K. L.), pp. 284342. W.B. Saunders Co, Philadelphia, PA.Google Scholar
Pavlov, V. A. and Tracey, K. J. (2004). Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61, 23222331.CrossRefGoogle ScholarPubMed
Pavlov, V. A. and Tracey, K. J. (2006). Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochemical Society Transactions 34, 10371040.Google Scholar
Ravera, I., Altet, L., Francino, O., Sánchez, A., Roldán, W., Villanueva, S., Bardagí, M. and Ferrer, L. (2013). Small Demodex populations colonize most parts of the skin of healthy dogs. Veterinary Dermatology 24, 168172.CrossRefGoogle ScholarPubMed
Rosas-Ballina, M. and Tracey, K. J. (2009). Cholinergic control of inflammation. Journal of Internal Medicine 265, 663679.Google Scholar
Rosas-Ballina, M., Olofsson, P. S., Ochani, M., Valdés-Ferrer, S. I., Levine, Y. A., Reardon, C., Tusche, M. W., Pavlov, V. A., Andersson, U., Chavan, S., Mak, T. W. and Tracey, K. J. (2011). Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98101.CrossRefGoogle Scholar
Singh, S. K. and Dimri, U. (2014). The immuno-pathological conversions of canine demodicosis. Veterinary Parasitology 203, 15.Google Scholar
Singh, S. K., Dimri, U., Sharma, M. C., Sharma, B. and Saxena, M. (2010). Determination of CD4+ and CD8+ T cells in the peripheral blood of dogs with demodicosis. Parasitology 137, 19211924.Google Scholar
Singh, S. K., Dimri, U., Sharma, M. C., Swarup, D., Sharma, B., Pandey, H. O. and Kumari, P. (2011). The role of apoptosis in immunosuppression of dogs with demodicosis. Veterinary Immunology and Immunopathology 144, 487492.CrossRefGoogle ScholarPubMed
Six, R. H., Becskei, C., Mazaleski, M. M., Fourie, J. J., Mahabir, S. P., Myers, M. R. and Slootmans, N. (2016). Efficacy of sarolaner, a novel oral isoxazoline, against two common mite infestations in dogs: Demodex spp. and Otodectes cynotis . Veterinary Parasitology 222, 6266.Google Scholar
Tani, K., Morimoto, M., Hayashi, T., Inokuma, H., Ohnishi, T., Hayashiya, S., Nomura, T., Une, S., Nakaichi, M. and Taura, Y. (2002). Evaluation of cytokine messenger RNA expression in peripheral blood mononuclear cells from dogs with canine demodicosis. Journal of Veterinary Medical Science 64, 513518.Google Scholar
Tonin, A. A., Calado, A. M., Bottari, N. B., Dalenogare, D., Thomé, G. R., Duarte, T., Duarte, M. M., Morsch, V. M., Schetinger, M. R., Alves, L. C., Tinucci-Costa, M. and Da Silva, A. S. (2016). Novel markers of inflammatory response and hepatic dysfunction in canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases 44, 6164.Google Scholar
Tracey, K. J. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. Journal of Clinical Investigation 117, 289296.Google Scholar
Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews Immunology 9, 418428.Google Scholar
Wolkmer, P., Paim, F. C., Da Silva, C. B., Gai, B. M., Carvalho, F. B., Da Souza, A. C., Da Rosa, M. M., Da Silva, A. S., Pereira, P. R., Lopes, S. T., Nogueira, C. W., Rubin, M. A., Monteiro, S. G. and Mazzanti, C. M. (2013). Trypanosoma evansi infection impairs memory, increases anxiety behaviour and alters neurochemical parameters in rats. Parasitology 140(11), 14321441.CrossRefGoogle ScholarPubMed
Yarim, G. F., Yagci, B. B. and Ciftci, G. (2013). Increased circulating concentrations of PDGF-BB and TGF-β1 in canine generalised demodicosis. Revue de Médecine Vétérinaire 164, 1317.Google Scholar