Skip to main content Accessibility help
×
Home

Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens

  • ANDY FENTON (a1)

Summary

Parasitic helminths are ubiquitous in most host, including human, populations. Helminths often alter the likelihood of infection and disease progression of coinfecting microparasitic pathogens (viruses, bacteria, protozoa), and there is great interest in incorporating deworming into control programmes for many major diseases (e.g. HIV, tuberculosis, malaria). However, such calls are controversial; studies show the consequences of deworming for the severity and spread of pathogens to be highly variable. Hence, the benefits of deworming, although clear for reducing the morbidity due to helminth infection per se, are unclear regarding the outcome of coinfections and comorbidities. I develop a theoretical framework to explore how helminth coinfection with other pathogens affects host mortality and pathogen spread and evolution under different interspecific parasite interactions. In all cases the outcomes of coinfection are highly context-dependent, depending on the mechanism of helminth-pathogen interaction and the quantitative level of helminth infection, with the effects of deworming potentially switching from beneficial to detrimental depending on helminth burden. Such context-dependency may explain some of the variation in the benefits of deworming seen between studies, and highlights the need for obtaining a quantitative understanding of parasite interactions across realistic helminth infection ranges. However, despite this complexity, this framework reveals predictable patterns in the effects of helminths that may aid the development of more effective, integrated management strategies to combat pathogens in this coinfected world.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK. E-mail: a.fenton@liverpool.ac.uk

References

Hide All
Abbas, A. K., Murphy, K. M. and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787793.
Alizon, S. (2008 a). Transmission-recovery trade-offs to study parasite evolution. American Naturalist 172, E113E121. doi:10.1086/589892.
Alizon, S. (2008 b). Decreased overall virulence in coinfected hosts leads to the persistence of virulent parasites. American Naturalist 172, E67E79. doi: 10.1086/588077.
Alizon, S. and van Baalen, M. (2008 a). Multiple infections, immune dynamics, and the evolution of virulence. American Naturalist 172, E150E168. doi: 10.1086/590958.
Alizon, S. and van Baalen, M. (2008 b). Transmission-virulence trade-offs in vector-borne diseases. Theoretical Population Biology 74, 615. doi: 10.1016/j.tpb.2008.04.003.
Alizon, S., Hurford, A., Mideo, N. and Van Baalen, M. (2009). Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology 22, 245259. doi: 10.1111/j.1420-9101.2008.01658.x.
Anderson, R. M. and May, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85, 411426.
Antia, R., Levin, B. R. and May, R. M. (1994). Within-host population dynamics and the evolution and maintenance of microparasite virulence. American Naturalist 144, 457472.
Basáñez, M.-G., French, M. D., Walker, M. and Churcher, T. S. (2012). Paradigm lost: how parasite control may alter pattern and process in human helminthiases. Trends in Parasitology 28, 161171. doi: 10.1016/j.pt.2012.02.004.
Behnke, J. M., Gilbert, F. S., Abu-Madi, M. A. and Lewis, J. W. (2005). Do the helminth parasites of wood mice interact? Journal of Animal Ecology 74, 982993.
Bentwich, Z., Kalinkovich, A., Weisman, Z., Borkow, G., Beyers, N. and Beyers, A. D. (1999). Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunology Today 20, 485487.
Bolker, B. M., Nanda, A. and Shah, D. (2010). Transient virulence of emerging pathogens. Journal of the Royal Society Interface 7, 811822. doi: 10.1098/rsif.2009.0384.
Bonhoeffer, S. and Nowak, M. A. (1994). Mutation and the evolution of virulence. Proceedings of the Royal Society of London Series B 258, 133140.
Bonhoeffer, S., Lenski, R. E. and Ebert, D. (1996). The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proceedings of the Royal Society of London Series B 263, 715721.
Boots, M., Hudson, P. J. and Sasaki, A. (2004). Large shifts in pathogen virulence relate to host population structure. Science 303, 842844.
Bremermann, H. J. and Pickering, J. (1983). A game-theoretical model of parasite virulence. Journal of Theoretical Biology 100, 411426.
Bull, J. J. (1994). Perspective – Virulence. Evolution 48, 14231437.
Bundy, D. A. P., Thompson, D. E., Cooper, E. S., Golden, M. H. N. and Anderson, R. M. (1985). Population dynamics and chemotherapeutic control of Trichuris trichuria infection of children in Jamaica and St Lucia. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 759764. doi: 10.1016/0035-9203(85)90110-5.
Bundy, D. A. P., Walson, J. L. and Watkins, K. L. (2013). Worms, wisdom, and wealth: why deworming can make economic sense. Trends in Parasitology 29, 142148.
Carval, D. and Ferriere, R. (2010). A unified model for the coevolution of resistance, tolerance and virulence. Evolution 64, 29883009. doi: 10.1111/j.1558-5646.2010.01035.x.
Chao, L., Hanley, K. A., Burch, C. L., Dahlberg, C. and Turner, P. E. (2000). Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Quarterly Review of Biology 75, 261275. doi: 10.1086/393499.
Cox, F. E. G. (2001). Concomitant infections, parasites and immune responses. Parasitology 122, S23S38.
Day, T. (2003). Virulence evolution and the timing of disease life-history events. Trends in Ecology and Evolution 18, 113118. doi: 10.1016/s0169-5347(02)00049–6.
Day, T., Graham, A. L. and Read, A. F. (2007). Evolution of parasite virulence when host responses cause disease. Proceedings of the Royal Society B–Biological Sciences 274, 26852692. doi: 10.1098/rspb.2007.0809.
Druilhe, P., Tall, A. and Sokhna, C. (2005). Worms can worsen malaria: towards a new means to roll back malaria? Trends in Parasitology 21, 359362.
Ebert, D. and Bull, J. J. (2003). Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends in Microbiology 11, 1520. doi: 10.1016/s0966-842x(02)00003-3.
Ebert, D. and Herre, E. A. (1996). The evolution of parasitic diseases. Parasitology Today 12, 96101. doi: 10.1016/0169-4758(96)80668-5.
Ewald, P. W. (1983). Host–parasite relations, vectors, and the evolution of disease severity. Annual Review of Ecology and Systematics 14, 465485. doi: 10.1146/annurev.es.14.110183.002341.
Ezenwa, V. O. and Jolles, A. E. (2011). From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integrative and Comparative Biology 51, 540551. doi: 10.1093/icb/icr058.
Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. and Jolles, A. E. (2010). Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. American Naturalist 176, 613624. doi: 10.1086/656496.
Fenton, A. (2008). Worms and germs: the population dynamic consequences of microparasite–macroparasite co-infection. Parasitology 135, 15451560.
Fenton, A. and Perkins, S. E. (2010). Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions. Parasitology 137, 10271038. doi: 10.1017/s0031182009991788.
Fenton, A., Lello, J. and Bonsall, M. B. (2006). Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence. Proceedings of the Royal Society B–Biological Sciences 273, 20832090.
Fenton, A., Lamb, T. and Graham, A. L. (2008). Optimality analysis of Th1/Th2 immune responses during microparasite–macroparasite co-infection, with epidemiological feedbacks. Parasitology 135, 841853.
Fenton, A., Viney, M. E. and Lello, J. (2010). Detecting interspecific macroparasite interactions from ecological data: patterns and process. Ecology Letters 13, 606615. doi:10.1111/j.1461-0248.2010.01458.x.
Frank, S. A. (1992). A kin selection model for the evolution of virulence. Proceedings of the Royal Society of London Series B 250, 195197.
Frank, S. A. (1996). Models of parasite virulence. Quarterly Review of Biology 71, 3778.
Frank, S. A. and Schmid-Hempel, P. (2008). Mechanisms of pathogenesis and the evolution of parasite virulence. Journal of Evolutionary Biology 21, 396404. doi: 10.1111/j.1420-9101.2007.01480.x.
Ganusov, V. V., Bergstrom, C. T. and Antia, R. (2002). Within-host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213223.
Graham, A. L. (2008). Ecological rules governing helminth–microparasite coinfection. Proceedings of the National Academy of Sciences USA 105, 566570.
Graham, A. L., Cattadori, I. M., Lloyd-Smith, J. O., Ferrari, M. J. and Bjornstad, O. N. (2007). Transmission consequences of coinfection: cytokines writ large? Trends in Parasitology 23, 284291.
Griffiths, E. C., Pedersen, A. B., Fenton, A. and Petchey, O. L. (2011). The nature and consequences of coinfection in humans. Journal of Infection 63, 200206. doi: 10.1016/j.jinf.2011.06.005.
Harms, G. and Feldmeier, H. (2002). HIV infection and tropical parasitic diseases – deleterious interactions in both directions? Tropical Medicine and International Health 7, 479488.
Harris, J. B., Podolsky, M. J., Bhuiyan, T. R., Chowdhury, F., Khan, A. I., LaRocque, R. C., Logvinenko, T., Kendall, J., Faruque, A. S. G., Nagler, C. R., Ryan, E. T., Qadri, F. and Calderwood, S. B. (2009). Immunologic responses to Vibrio cholerae in patients co-infected with intestinal parasites in Bangladesh. PLoS Neglected Tropical Diseases 3, e403. doi: 10.1371/journal.pntd.0000403.
Hartgers, F. C. and Yazdanbakhsh, M. (2006). Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunology 28, 497506. doi: 10.1111/j.1365-3024.2006.00901.x.
Hawkes, N. (2012). Deworming debunked. Br Med J 345, e8558. doi: 10.1136/bmj.e8558.
Jolles, A. E., Ezenwa, V. O., Etienne, R. S., Turner, W. C. and Olff, H. (2008). Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 89, 22392250. doi: 10.1890/07-0995.1.
Kamo, M., Sasaki, A. and Boots, M. (2007). The role of trade-off shapes in the evolution of parasites in spatial host populations: an approximate analytical approach. Journal of Theoretical Biology 244, 588596. doi: 10.1016/j.jtbi.2006.08.013.
Knowles, S. C. L., Fenton, A., Petchey, O. L., Jones, R. C., Barber, R. and Pedersen, A. B. (2013). Stability of within-host parasite communities in a wild mammal system. Proceedings of the Royal Society of London Series B (in press).
Lello, J., Boag, B., Fenton, A., Stevenson, I. R. and Hudson, P. J. (2004). Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840844.
Lenski, R. E. and May, R. M. (1994). The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. Journal of Theoretical Biology 169, 253265. doi: 10.1006/jtbi.1994.1146.
Levin, B. R. and Bull, J. J. (1994). Short-sighted evolution and the virulence of pathogenic microorganisms. Trends in Microbiology 2, 7681. doi: 10.1016/0966-842x(94)90538-x.
Levin, S. and Pimentel, D. (1981). Selection of intermediate rates of increase in parasite–host systems. American Naturalist 117, 308315. doi: 10.1086/283708.
Lipsitch, M. and Moxon, E. R. (1997). Virulence and transmissibility of pathogens: what is the relationship? Trends in Microbiology 5, 3137. doi: 10.1016/s0966-842x(97)81772-6.
Little, M. P., Basanez, M. G., Breitling, L. P., Boatin, B. A. and Alley, E. S. (2004 a). Incidence of blindness during the Onchocerciasis Control Programme in western Africa, 1971–2002. Journal of Infectious Diseases 189, 19321941. doi: 10.1086/383326.
Little, M. P., Breitling, L. P., Basanez, M. G., Alley, E. S. and Boatin, B. A. (2004 b). Association between microfilarial load and excess mortality in onchocerciasis: an epidemiological study. Lancet 363, 15141521. doi: 10.1016/s0140-6736(04)16151-5.
Lively, C. M. (2005). Evolution of virulence: coinfection and propagule production in spore-producing parasites. BMC Evolutionary Biology 5, 64. doi: 10.1186/1471-2148-5-64.
Maizels, R. M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M. D. and Allen, J. E. (2004). Helminth parasites – masters of regulation. Immunological Reviews 201, 89116. doi: 10.1111/j.0105-2896.2004.00191.x.
May, R. M. and Nowak, M. A. (1994). Superinfection, metapopulation dynamics, and the evolution of diversity. Journal of Theoretical Biology 170, 95114.
May, R. M. and Nowak, M. A. (1995). Coinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London Series B 261, 209215.
Mideo, N., Alizon, S. and Day, T. (2008). Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends in Ecology and Evolution 23, 511517. doi: 10.1016/j.tree.2008.05.009.
Mosquera, J. and Adler, F. R. (1998). Evolution of virulence: a unified framework for coinfection and superinfection. Journal of Theoretical Biology 195, 293313.
Nacher, M. (2006). Worms and malaria: resisting the temptation to generalize. Trends in Parasitology 22, 350351. doi:10.1016/j.pt.2006.06.003.
Njongmeta, L. M., Nfon, C. K., Gilbert, J., Makepeace, B. L., Tanya, V. N. and Trees, A. J. (2004). Cattle protected from onchocerciasis by ivermectin are highly susceptible to infection after drug withdrawal. International Journal for Parasitology 34, 10691074. doi: 10.1016/j.ijpara.2004.04.011.
Nowak, M. A. and May, R. M. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London Series B 255, 8189.
Pedersen, A. B. and Fenton, A. (2007). Emphasising the ecology in parasite community ecology. Trends in Ecology and Evolution 22, 133139.
Petney, T. N. and Andrews, R. H. (1998). Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. International Journal for Parasitology 28, 377393.
Read, A. F. and Taylor, L. H. (2001). The ecology of genetically diverse infections. Science 292, 10991102. doi: 10.1126/science.1059410.
Restif, O. and Koella, J. C. (2003). Shared control of epidemiological traits in a coevolutionary model of host–parasite interactions. American Naturalist 161, 827836.
Schjorring, S. and Koella, J. C. (2003). Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proceedings of the Royal Society B–Biological Sciences 270, 189193. doi: 10.1098/rspb.2002.2233.
Taylor-Robinson, D. C., Maayan, N., Soares-Weiser, K., Donegan, S. and Garner, P. (2012). Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin and school performance. Cochrane Database of Systematic Reviews 7, CD000371.
Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Paterson, S. and Begon, M. (2010). Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243246.
van Baalen, M. and Sabelis, M. W. (1995). The dynamics of multiple infection and the evolution of virulence. American Naturalist 146, 881910.
van Riet, E., Hartgers, F. C. and Yazdanbakhsh, M. (2007). Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212, 475490. doi: 10.1016/j.imbio.2007.03.009.
Walker, M., Little, M. P., Wagner, K. S., Soumbey-Alley, E. W., Boatin, B. A. and Basanez, M.-G. (2012). Density-dependent mortality of the human host in onchocerciasis: relationships between microfilarial load and excess mortality. PLoS Neglected Tropical Diseases 6. doi: e157810. doi: 1371/journal.pntd.0001578.

Keywords

Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens

  • ANDY FENTON (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed