Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:22:16.726Z Has data issue: false hasContentIssue false

Concluding remarks: variation and polymorphism in parasite phenotype – implications for the selection of potential intervention strategies

Published online by Cambridge University Press:  06 April 2009

R. E. Sinden
Affiliation:
Department of Pure and Applied Biology, Imperial College, London SW7 2BB

Extract

Work reported at this meeting has described the exploitation of variation in parasite phenotype in disciplines ranging from molecular taxonomy and drug development, through the understanding of host-parasite interaction, to the evolution of parasite populations and determining the potential efficacy of vaccine programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M., May, R. M. & Gupta, S. (1989). Nonlinear phenomena in host-parasite interactions. Parasitology 99, S59–S79CrossRefGoogle ScholarPubMed
Arnot, D. E., Barnwell, J. W. & Stewart, M. J. (1988). Does bias gene conversion influence polymorphism in the circumsporozoite protein-encoding gene of Plasmodium vivax? Proceedings of the National Academy of Sciences, USA 85, 8102–6.CrossRefGoogle Scholar
Barker, D. C. (1989). Molecular approaches to DNA diagnosis. Parasitology 99, S125–S146.CrossRefGoogle ScholarPubMed
Bianco, A. E. & Maizels, R. M. (1989). Parasite development and adaptive specialization. Parasitology 99, S113–S123CrossRefGoogle ScholarPubMed
Carter, R. & Chen, D. H. (1976). Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature, London 263, 5760.CrossRefGoogle ScholarPubMed
Dayhoff, M. O. (1972). Atlas of Protein Sequence and Structure, vol. 5. National Biomedical Research Council, Washington, D.C.Google Scholar
Enea, V., Galinski, M., Schmidt, E., Gwadz, R. W. & Nussenzweig, R. S. (1986). Evolutionary profile of the circumsporozoite gene of the Plasmodium cynomolgi complex. Journal of Molecular Biology 188, 721–6.CrossRefGoogle ScholarPubMed
Fairlamb, A. H. (1989). Novel biochemical pathways in parasitic protozoa. Parasitology 99, S93–S112CrossRefGoogle ScholarPubMed
Godson, G. N., Ellis, J., Lupski, J. R., Ozaki, L. S. & Svec, P. (1984). Structure and organization of genes for sporozoite surface antigens. Philosophical Transactions of the Royal Society, B 307, 129–39.Google ScholarPubMed
Good, M. F., Berzofsky, J. A. & Miller, L. H. (1988). The T cell response to the malaria circumsporozoite protein: an immunological approach to vaccine development. Annual Review of Immunology 6, 663–88.CrossRefGoogle Scholar
Harte, P. G., Rogers, N. & Targett, G. A. T. (1985). Vaccination with purified microgamete antigens prevents transmission of rodent malaria. Nature, London 316, 258–9.CrossRefGoogle ScholarPubMed
Holder, A. A. (1988). The precursor to the major merozoite surface antigens: structure and role in immunity. Progress in Allergy 41, 7297.Google Scholar
Kumar, N. & Carter, R. (1984). Biosynthesis of the target antigens of antibodies blocking transmission of Plasmodium falciparum. Molecular and Biochemical Parasitology 13, 333–42.CrossRefGoogle ScholarPubMed
Kumar, N. & Carter, R. (1985). Biosynthesis of two stage-specific membrane proteins during transformation of Plasmodium gallinaceum zygotes into ookinetes. Molecular and Biochemical Parasitology 14, 127–39.CrossRefGoogle ScholarPubMed
McCutchan, T. F., De La Cruz, V. F., Good, M. F. & Wellems, T. E. (1988). Antigenic diversity in Plasmodium falciparum. Progress in Allergy 41, 173–92.Google ScholarPubMed
Mendis, K. N., Peiris, J. S. M., Premawansa, S., Undagama, P. V. & Munesinghe, Y. (1987). Immune modulation of parasite transmission in Plasmodium vivax malaria. Anti-gamete antibodies can both block and enhance transmission. UCLA Symposia on Molecular and Cellular Biology (ed. Agabian, N., Goodman, H. & Nogueira, N.), vol. 42, pp. 417–26. Molecular Strategies of Parasite Invasion. New York: Alan Liss.Google Scholar
Mendis, K. N. & Targett, G. A. T. (1979). Immunization against gametes and asexual stages of rodent malaria parasites. Nature, London 277, 389–91.CrossRefGoogle Scholar
Murray, M., Hirumi, H. & Moloo, S. K. (1985). Suppression of Trypanosoma congolense, T. vivax and T. brucei infection rates in tsetse flies maintained on goats immunized with uncoated forms of trypanosomes grown in vitro. Parasitology 91, 5366.CrossRefGoogle Scholar
Nijhout, M. M. & Carter, R. (1978). Gamete development in malarial parasites: bicarbonate-dependent stimulation by pH in vitro. Parasitology 76, 3953.CrossRefGoogle Scholar
Parkhouse, R. M. E. & Harrison, L. J. S. (1989). Antigens of parasitic helminths in diagnosis, protection and pathology. Parasitology 99, S5–S19.CrossRefGoogle ScholarPubMed
Ponnudurai, T., Lensen, A. H. W., Van Gemert, G. J. A., Bensink, M. P. E., Bolmer, M. & Meuwissen, J. H. E. T. (1989). Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98, 165–73.CrossRefGoogle ScholarPubMed
Sinden, R. E. & Croll, N. A. (1975). Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis. Parasitology 70, 5365.CrossRefGoogle ScholarPubMed
Smyth, D. & Davies, Z. (1974). The occurrence of physiological strains of Echinococcus granulosus demonstrated by in vitro culture of protoscolesces from sheep and horse. International Journal for Parasitology 4, 443–5.CrossRefGoogle Scholar
Vaughan, J. A., Do Rosario, V., Leland, P., Adjepong, A., Light, J., Woollett, G. R., Hollingdale, M. R. & Azad, A. F. (1988). Plasmodium falciparum: Ingested anti-sporozoite antibodies affect sporogony in Anopheles stephensi mosquitoes. Experimental Parasitology 66, 171–82.CrossRefGoogle ScholarPubMed
Vermeulen, A. N., Ponnudurai, T., Beckers, P. J. A., Verhave, J. P., Smits, M. A. & Meuwissen, J. H. E. T. (1985). Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies. Journal of Experimental Medicine 162, 1460–5.CrossRefGoogle ScholarPubMed
Vickerman, K. (1989). Trypanosome sociology and antigenic variation. Parasitology 99, S37–S47.CrossRefGoogle ScholarPubMed
Wakelin, D. (1989). Nature and nurture: overcoming constraints on immunity. Parasitology 99, S21–S35.CrossRefGoogle ScholarPubMed
Walliker, D. (1989). Implications of genetic exchange in the study of protozoan infections. Parasitology 99, S49–S58.CrossRefGoogle Scholar
Warhurst, D. A., Homewood, C. A., Peters, W. A. & Baggaley, V. C. (1972). Pigment changes in Plasmodium berghei as indicators of activity and mode of action of antimalarial drugs. Proceedings of the Helminthological Society, Washington 39, 271–8.Google Scholar
Winger, L. A., Smith, J. E., Nicholas, J., Carter, H. E., Tirawanchai, N. & Sinden, R. E. (1988). Ookinete antigens of Plasmodium berghei: appearance on the zygote of an Mr 21 K surface determinant identified by transmission blocking monoclonal antibodies. Parasite Immunology 10, 193207.CrossRefGoogle Scholar