Skip to main content Accessibility help
×
Home

A comparison of sequence and length polymorphism for genotyping Cryptosporidium isolates

  • G. WIDMER (a1) and S. M. CACCIÒ (a2)

Summary

Simple sequence repeat markers have played an important role in elucidating the epidemiology of human and animal cryptosporidiosis. The drawback of sequence length polymorphisms is that nucleotide substitutions remain undetected. As some laboratories have opted for using length polymorphisms, while others have relied on sequencing, there is a need to compare both methods. We used a diversified set of unique length polymorphisms and matching nucleotide sequences to assess the ability of each genotyping protocol to discern clusters of related Cryptosporidium parvum isolates. We found a weak correlation between the two distance measures for individual markers. This analysis was extended to four-locus genotypes based on sequence length data or concatenated sequences from the same loci. We interrogated these data to assess whether one would reach the same conclusions regardless of the genotyping method. Clusters of isolates generated with the concatenated sequences were not observed with amplicon length, indicating that inferences on the structure of a Cryptosporidium population depend on the genotyping method. Moreover, isolate clusters derived from concatenated sequences were dependent on the algorithm used to calculate distances. These results emphasize the need for harmonizing genotyping tools, not only by selecting informative markers, but also by standardizing the entire genotyping method.

Copyright

Corresponding author

* Corresponding author. Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, 200 Westborough Road, North Grafton, Massachusetts 01536, USA. E-mail: giovanni.widmer@tufts.edu

References

Hide All
Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G., Tzipori, S., Buck, G. A., Xu, P., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L. and Kapur, V. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 304, 441445.
Barnes, D. A., Bonnin, A., Huang, J. X., Gousset, L., Wu, J., Gut, J., Doyle, P., Dubremetz, J. F., Ward, H. and Petersen, C. (1998). A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Molecular and Biochemical Parasitology 96, 93110.
Caccio, S., Spano, F. and Pozio, E. (2001). Large sequence variation at two microsatellite loci among zoonotic (genotype C) isolates of Cryptosporidium parvum . International Journal for Parasitology 31, 10821086.
Cevallos, A. M., Zhang, X., Waldor, M. K., Jaison, S., Zhou, X., Tzipori, S., Neutra, M. R. and Ward, H. D. (2000). Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infection and Immunity 68, 41084116.
Chalmers, R. M., Hadfield, S. J., Jackson, C. J., Elwin, K., Xiao, L. and Hunter, P. (2008). Geographic linkage and variation in Cryptosporidium hominis . Emerging Infection Diseases 14, 496498.
Clarke, K. R. (1993). Nonparametric Multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.
Drumo, R., Widmer, G., Morrison, L. J., Tait, A., Grelloni, V., D'Avino, N., Pozio, E. and Caccio, S. M. (2012). Evidence of host-associated populations of Cryptosporidium parvum in Italy. Applied and Environmental Microbiology 78, 35233529.
Escalante, A. A., Lal, A. A. and Ayala, F. J. (1998). Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum . Genetics 149, 189202.
Felsenstein, J. (1995). PHYLIP.[3·57 c]. Department of Genetics, University of Washington, Seattle.
Feng, X., Rich, S. M., Akiyoshi, D., Tumwine, J. K., Kekitiinwa, A., Nabukeera, N., Tzipori, S. and Widmer, G. (2000). Extensive polymorphism in Cryptosporidium parvum identified by multilocus microsatellite analysis. Applied and Environmental Microbiology 66, 33443349.
Feng, Y., Tiao, N., Li, N., Hlavsa, M. and Xiao, L. (2014). Multilocus sequence typing of an emerging Cryptosporidium hominis subtype in the United States. Journal of Clinical Microbiology 52, 524530.
Gatei, W., Hart, C. A., Gilman, R. H., Das, P., Cama, V. and Xiao, L. (2006). Development of a multilocus sequence typing tool for Cryptosporidium hominis . Journal of Eukaryotic Microbiology 53(Supplement 1), S43S48.
Gatei, W., Das, P., Dutta, P., Sen, A., Cama, V., Lal, A. A. and Xiao, L. (2007). Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infection Genetics and Evolution 7, 197205.
Hammer, Ø., Harper, D. and Ryan, P. (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Paleontologia Electronica 4, 19.
Heiges, M., Wang, H., Robinson, E., Aurrecoechea, C., Gao, X., Kaluskar, N., Rhodes, P., Wang, S., He, C. Z., Su, Y., Miller, J., Kraemer, E. and Kissinger, J. C. (2006). CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Research 34, D419D422.
Laxer, M. A., Timblin, B. K. and Patel, R. J. (1991). DNA sequences for the specific detection of Cryptosporidium parvum by the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 45, 688694.
Legendre, P. and Legendre, L. F. (2012). Numerical Ecology. Elsevier Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
Madesis, P., Ganopoulos, I. and Tsaftaris, A. (2013). Microsatellites: evolution and contribution. Methods in Molecular Biology 1006, 113.
Mallon, M., MacLeod, A., Wastling, J., Smith, H., Reilly, B. and Tait, A. (2003). Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum . Journal of Molecular Evolution 56, 407417.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.
Morrison, L. J., Mallon, M. E., Smith, H. V., MacLeod, A., Xiao, L. and Tait, A. (2008). The population structure of the Cryptosporidium parvum population in Scotland: a complex picture. Infection Genetics and Evolution 8, 121129.
Peakall, R. and Smouse, P. E. (2012). GenAlEx 6·5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 25372539.
Ryan, U. and Xiao, L. (2014). Taxonomy and molecular taxonomy. In Cryptosporidium: Parasite and Disease, (eds. Caccio, S.M., Widmer, G.) Springer Wien, Heidelberg, New York, Dordrecht, London, 341.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75, 75377541.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. and Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular System Biology 7, 539.
Strong, W. B., Gut, J. and Nelson, R. G. (2000). Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infection and Immunity 68, 41174134.
Tanriverdi, S. and Widmer, G. (2006). Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis . Infection Genetics and Evolution 6, 113122.
Tautz, D. (1989). Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17, 64636471.
Widmer, G. and Lee, Y. (2010). Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis . Applied Environmental Microbiology 76, 66396644.
Widmer, G. and Sullivan, S. (2012). Genomics and population biology of Cryptosporidium species. Parasite Immunology 34, 6171.
Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. (2004). The genome of Cryptosporidium hominis . Nature 431, 11071112.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed