Skip to main content Accessibility help
×
Home

Chloroquine-containing organoruthenium complexes are fast-acting multistage antimalarial agents

  • TAÍS S. MACEDO (a1), LEGNA COLINA-VEGAS (a2), MARCELO DA PAIXÃO (a1), MARIBEL NAVARRO (a3), BRENO C. BARRETO (a1) (a4), POLIANA C. M. OLIVEIRA (a1) (a4), SIMONE G. MACAMBIRA (a4) (a5), MARTA MACHADO (a6), MIGUEL PRUDÊNCIO (a6), SARAH D'ALESSANDRO (a7), NICOLETTA BASILICO (a8), DIOGO R. M. MOREIRA (a1), ALZIR A. BATISTA (a2) and MILENA B. P. SOARES (a1) (a5)...

Summary

We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.

Copyright

Corresponding author

*Corresponding author: FIOCRUZ, Centro de Pesquisas Gonçalo Moniz, CEP 40296-710, Salvador, BA, Brazil. Phone: (+55)71-31762292. E-mail: milena@bahia.fiocruz.br

References

Hide All
Adams, M., Li, Y., Khot, H., De Kock, C., Smith, P. J., Land, K., Chibale, K. and Smith, G. S. (2013). The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(II)-arene complexes. Dalton Transactions 42, 46774685.
Adams, M., de Kock, C., Smith, P. J., Land, K. M., Liu, N., Hopper, M., Hsiao, A., Burgoyne, A. R., Stringer, T., Meyer, M., Wiesner, L., Chibale, K. and Smith, G. S. (2015). Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Transactions 44, 24562468.
Barbosa, M. I., Corrêa, R. S., de Oliveira, K. M., Rodrigues, C., Ellena, J., Nascimento, O. R., Rocha, V. P., Nonato, F. R., Macedo, T. S., Barbosa-Filho, J. M., Soares, M. B. and Batista, A. A. (2014). Antiparasitic activities of novel ruthenium/lapachol complexes. Journal of Inorganic Biochemistry 136, 3339.
Cevenini, L., Camarda, G., Michelini, E., Siciliano, G., Calabretta, M. M., Bona, R., Kumar, T. R., Cara, A., Branchini, B. R., Fidock, D. A., Roda, A. and Alano, P. (2014). Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Analytical Chemistry 86, 88148821.
Chellan, P., Land, K. M., Shokar, A., Au, A., An, S. H., Taylor, D., Smith, P. J., Riedel, T., Dyson, P. J., Chibale, K. and Smith, G. S. (2014). Synthesis and evaluation of new polynuclear organometallic Ru(II), Rh(III) and Ir(III) pyridyl ester complexes as in vitro antiparasitic and antitumor agents. Dalton Transactions 43, 513526.
Clavel, C. M., Păunescu, E., Nowak-Sliwinska, P., Griffioen, A. W., Scopelliti, R. and Dyson, P. J. (2015). Modulating the anticancer activity of ruthenium(II)-arene complexes. Journal of Medicinal Chemistry 58, 33563365.
Colina-Vegas, L., Villarreal, W., Navarro, M., de Oliveira, C. R., Graminha, A. E., Maia, P. I., Deflon, V. M., Ferreira, A. G., Cominetti, M. R. and Batista, A. A. (2015). Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: interactions with DNA and BSA. Journal of Inorganic Biochemistry 153, 150161.
D'Alessandro, S., Silvestrini, F., Dechering, K., Corbett, Y., Parapini, S., Timmerman, M., Galastri, L., Basilico, N., Sauerwein, R., Alano, P. and Taramelli, D. (2013). A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection. Journal of Antimicrobial Chemotherapy 68, 20482058.
Dubar, F., Egan, T. J., Pradines, B., Kuter, D., Ncokazi, K. K., Forge, D., Paul, J. F., Pierrot, C., Kalamou, H., Khalife, J., Buisine, E., Rogier, C., Vezin, H., Forfar, I., Slomianny, C., Trivelli, X., Kapishnikov, S., Leiserowitz, L., Dive, D. and Biot, C. (2011). The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chemical Biology 6, 275287.
Dubar, F., Slomianny, C., Khalife, J., Dive, D., Kalamou, H., Guérardel, Y., Grellier, P. and Biot, C. (2013). The ferroquine antimalarial conundrum: redox activation and reinvasion inhibition. Angewandte Chemie International Edition in English 52, 76907693.
Egan, T. J., Ross, D. C. and Adams, P. A. (1994). Quinoline anti-malarial drugs inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS Letters 352, 5457.
Egan, T. J., Mavuso, W. W., Ross, D. C. and Marques, H. M. (1997). Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. Journal of Inorganic Biochemistry 68, 137145.
Ekengard, E., Glans, L., Cassells, I., Fogeron, T., Govender, P., Stringer, T., Chellan, P., Lisensky, G. C., Hersh, W. H., Doverbratt, I., Lidin, S., de Kock, C., Smith, P. J., Smith, G. S. and Nordlander, E. (2015). Antimalarial activity of ruthenium(ii) and osmium(ii) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Transactions 44, 1931419329.
Fu, Y., Tilley, L., Kenny, S. and Klonis, N. (2010). Dual labeling with a far red probe permits analysis of growth and oxidative stress in P. falciparum-infected erythrocytes. Cytometry Part A. 77, 253263.
Gabbiani, C., Messori, L., Cinellu, M. A., Casini, A., Mura, P., Sannella, A. R., Severini, C., Majori, G., Bilia, A. R. and Vincieri, F. F. (2009). Outstanding plasmodicidal properties within a small panel of metallic compounds: hints for the development of new metal-based antimalarials. Journal of Inorganic Biochemistry 103, 310312.
Glans, L., Taylor, D., de Kock, C., Smith, P. J., Haukka, M., Moss, J. R. and Nordlander, E. (2011). Synthesis, characterization and antimalarial activity of new chromium arene-quinoline half sandwich complexes. Journal of Inorganic Biochemistry 105, 985990.
Glans, L., Ehnbom, A., de Kock, C., Martínez, A., Estrada, J., Smith, P. J., Haukka, M., Sánchez-Delgado, R. A. and Nordlander, E. (2012 a). Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: synthesis, characterization and in vitro antimalarial activity. Dalton Transactions 41, 27642773.
Glans, L., Hu, W., Jöst, C., de Kock, C., Smith, P. J., Haukka, M., Bruhn, H., Schatzschneider, U. and Nordlander, E. (2012 b ). Synthesis and biological activity of cymantrene and cyrhetrene 4-aminoquinoline conjugates against malaria, leishmaniasis, and trypanosomiasis. Dalton Transactions 41, 64436450.
Goldberg, D. E., Sharma, V., Oksman, A., Gluzman, I. Y., Wellems, T. E. and Piwnica-Worms, D. (1997). Probing the chloroquine resistance locus of Plasmodium falciparum with a novel class of multidentate metal(III) coordination complexes. Journal of Biological Chemistry 272, 65676572.
Huta, B. P., Mehlenbacher, M. R., Nie, Y., Lai, X., Zubieta, C., Bou-Abdallah, F. and Doyle, R. P. (2016). The lysosomal protein saposin B binds chloroquine. ChemMedChem 11, 277282.
Khanye, S. D., Smith, G. S., Lategan, C., Smith, P. J., Gut, J, Rosenthal, P. J. and Chibale, K. (2010). Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. Journal of Inorganic Biochemistry 104, 10791083.
Lewis, M. D., Behrends, J., , E., Cunha, C., Mendes, A. M., Lasitschka, F., Sattler, J. M., Heiss, K., Kooij, T. W., Navarro, M., Pérez, H. and Sánchez-Delgado, R. A. (1997). Toward a novel metal-based chemotherapy against tropical diseases. 3. Synthesis and antimalarial activity in vitro and in vivo of the new gold-chloroquine complex [Au(PPh3)(CQ)]PF6. Journal of Medicinal Chemistry 40, 19371939.
Lin, J. W., Spaccapelo, R., Schwarzer, E., Sajid, M., Annoura, T., Deroost, K., Ravelli, R. B., Aime, E., Capuccini, B., Mommaas-Kienhuis, A. M., O'Toole, T., Prins, F., Franke-Fayard, B. M., Ramesar, J., Chevalley-Maurel, S., Kroeze, H., Koster, A. J., Tanke, H. J., Crisanti, A., Langhorne, J., Arese, P., Van den Steen, P. E., Janse, C. J. and Khan, S. M. (2015). Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance. Journal of Experimental Medicine 212, 893903.
Martínez, A., Rajapakse, C. S., Jalloh, D., Dautriche, C. and Sánchez-Delgado, R. A. (2009). The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces. Journal of Biological Inorganic Chemistry 14, 863871.
Martínez, A., Suárez, J., Shand, T., Magliozzo, R. S. and Sánchez-Delgado, R. A. (2011). Interactions of arene-Ru(II)-chloroquine complexes of known antimalarial and antitumor activity with human serum albumin (HSA) and transferrin. Journal of Inorganic Biochemistry 105, 3945.
Maschke, M., Alborzinia, H., Lieb, M., Wölfl, S. and Metzler-Nolte, N. (2014). Structure-activity relationship of trifluoromethyl-containing metallocenes: electrochemistry, lipophilicity, cytotoxicity, and ROS production. ChemMedChem 9, 11881194.
Meier, S. M., Novak, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Metzler-Nolte, N., Keppler, B. K. and Hartinger, C. G. (2013). Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chemistry 19, 92979307.
Navarro, M., Vásquez, F., Sánchez-Delgado, R. A., Pérez, H., Sinou, V. and Schrével, J. (2004). Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes. Journal of Medicinal Chemistry 47, 5204–209.
Navarro, M., Castro, W., Higuera-Padilla, A. R., Sierraalta, A., Abad, M. J., Taylor, P. and Sánchez-Delgado, R. A. (2011 a). Synthesis, characterization and biological activity of trans-platinum(II) complexes with chloroquine. Journal of Inorganic Biochemistry 105, 16841691.
Navarro, M., Castro, W., Martínez, A. and Sánchez Delgado, R. A. (2011 b). The mechanism of antimalarial action of [Au(CQ)(PPh(3))]PF(6): structural effects and increased drug lipophilicity enhance heme aggregation inhibition at lipid/water interfaces. Journal of Inorganic Biochemistry 105, 276282.
Navarro, M., Castro, W., Madamet, M., Amalvict, R., Benoit, N. and Pradines, B. (2014). Metal-chloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action. Malaria Journal 13, 471.
Nilsson, S. K., Childs, L. M., Buckee, C. and Marti, M. (2015). Targeting human transmission biology for malaria elimination. PLoS Pathogens 11, e1004871.
Parapini, S., Basilico, N., Pasini, E., Egan, T. J., Olliaro, P., Taramelli, D. and Monti, D. (2000). Standardization of the physicochemical parameters to assess in vitro the beta-hematin inhibitory activity of antimalarial drugs. Experimental Parasitology 96, 249256.
Peacock, A. F. and Sadler, P. J. (2008). Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. Chemistry Asian Journal 3, 1890–1189.
Pérez, B. C., Teixeira, C., Albuquerque, I. S., Gut, J., Rosenthal, P. J., Gomes, J. R., Prudêncio, M. and Gomes, P. (2013). N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads. Journal of Medicinal Chemistry 56, 556567.
Petersen, I., Eastman, R. and Lanzer, M. (2011). Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Letters 585, 15511562.
Ploemen, I. H., Prudêncio, M., Douradinha, B. G., Ramesar, J., Fonager, J., van Gemert, G. J., Luty, A. J., Hermsen, C. C., Sauerwein, R. W., Baptista, F. G., Mota, M. M., Waters, A. P., Que, I., Lowik, C. W., Khan, S. M., Janse, C. J. and Franke-Fayard, B. M. (2009). Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. Plos ONE 4, e7881.
Price, R. N., von Seidlein, L., Valecha, N., Nosten, F., Baird, J. K. and White, N. J. (2014). Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infectious Diseases 14, 982991.
Prudêncio, M., Rodriguez, A. and Mota, M. M. (2006). The silent path to thousands of merozoites: the Plasmodium liver stage. Nature Reviews Microbiology 4, 849856.
Prudêncio, M., Mota, M. M. and Mendes, A. M. (2011). A toolbox to study liver stage malaria. Trends in Parasitology 27, 565574.
Prudêncio, M., Bringmann, G., Frischknecht, F. and Mueller, A. K. (2015). Chemical attenuation of Plasmodium in the liver modulates severe malaria disease progression. Journal of Immunology. 194, 48604870.
Rajapakse, C. S., Martínez, A., Naoulou, B., Jarzecki, A. A., Suárez, L., Deregnaucourt, C., Sinou, V., Schrével, J., Musi, E., Ambrosini, G., Schwartz, G. K. and Sánchez-Delgado, R. A. (2009). Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine. Inorganic Chemistry 48, 11221131.
Rodrigues, T., Prudêncio, M., Moreira, R., Mota, M. M. and Lopes, L. (2012). Targeting the liver stage of malaria parasites: a yet unmet goal. Journal of Medicinal Chemistry 55, 9951012.
Salas, P. F., Herrmann, C., Cawthray, J. F., Nimphius, C., Kenkel, A., Chen, J., de Kock, C., Smith, P. J., Patrick, B. O., Adam, M. J. and Orvig, C. (2013). Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. Journal of Medicinal Chemistry 56, 15961613.
Sánchez-Delgado, R. A., Navarro, M., Pérez, H. and Urbina, J. A. (1996). Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium- and rhodium-chloroquine complexes. Journal of Medicinal Chemistry 39, 10951099.
Scovill, J. P., Klayman, D. L. and Franchino, C. F. (1982). 2-Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents. Journal of Medicinal Chemistry 25, 12611264.
Stone, W., Gonçalves, B. P., Bousema, T. and Drakeley, C. (2015). Assessing the infectious reservoir of falciparum malaria: past and future. Trends in Parasitology 31, 287296.
WHO Global Malaria Programme. World Malaria Report (2015), World Health Organization, Geneva, 2015. http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Macedo supplementary material
Table S1 and Figures S1-S5

 Word (2.0 MB)
2.0 MB

Chloroquine-containing organoruthenium complexes are fast-acting multistage antimalarial agents

  • TAÍS S. MACEDO (a1), LEGNA COLINA-VEGAS (a2), MARCELO DA PAIXÃO (a1), MARIBEL NAVARRO (a3), BRENO C. BARRETO (a1) (a4), POLIANA C. M. OLIVEIRA (a1) (a4), SIMONE G. MACAMBIRA (a4) (a5), MARTA MACHADO (a6), MIGUEL PRUDÊNCIO (a6), SARAH D'ALESSANDRO (a7), NICOLETTA BASILICO (a8), DIOGO R. M. MOREIRA (a1), ALZIR A. BATISTA (a2) and MILENA B. P. SOARES (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.