Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-30T01:54:24.841Z Has data issue: false hasContentIssue false

The chemotherapy of Plasmodium berghei. II. Antagonism of the action of drugs

Published online by Cambridge University Press:  06 April 2009

June P. Thurston
Affiliation:
The Molteno Institute, University of Cambridge, and the National Institute for Medical Research, London

Extract

The action of pyrimethamine, sulphadiazine, proguanil and its active metabolite CPT, and 2:4-diaminopteridines against infections of Plasmodium berghei in mice was antagonized by P–aminobenzoic acid and by pteroylglutamic acid. Antagonism was in some instances detected only when P–aminobenzoic acid was given in solution in the drinking water as well as being injected subcutaneously. No antagonism was detected with a number of amino acids and nucleic acid derivatives.

As all of the above group of drugs can be antagonized by P–aminobenzoic acid and by pteroylglutamic acid, it would seem that they are alike in their mode of action. There must, however, be some differences between the mode of action or absorption of these drugs because species of Plasmodium that are very sensitive to the action of one of these drugs are frequently not very sensitive to the action of others.

As P. berghei is dependent on p–aminobenzoic acid, it is suggested that it can utilize this compound in the synthesis of pteroylglutamic acid to a greater extent than can P. gallinaceum, and that it resembles P. knowlesi more than other species of Plasmodium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antinsen, C. B., Geiman, Q. M., McKee, R. W., Ormsbee, R. A. & Ball, E. G. (1946). Studies on malarial parasites. VII. Factors affecting the growth of Plasmodium knowlesi in vitro. J. Exp. Med. 84, 607.Google Scholar
Bishop, A. & McConnachie, E. W. (1948). Resistance to sulphadiazine and paludrine in the malaria parasite of the fowl (P. gallinaceum). Nature, Lond., 162, 541.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1950). Sulphadiazine-resistance in Plasmodium gallinaceum and its relation to other antimalarial compounds. Parasitology, 40, 163.CrossRefGoogle ScholarPubMed
Carrington, H. C., Crowther, A. F., Davey, D. G., Levi, A. A. & Rose, F. L. (1951). A metabolite of ‘Paludrine’ with high antimalarial activity. Nature, Lond., 168, 1080.CrossRefGoogle ScholarPubMed
Collier, H. O. J. & Waterhouse, P. D. (1950). Studies in the chemotherapy of cholera. IV. Antagonism of the antibacterial activities of 2:4-diaminopteridines, sulphaguanidine, and their mixtures. Ann. Trop. Med. Parasit. 44, 273.CrossRefGoogle ScholarPubMed
Collier, H. O. J. & Waterhouse, P. D. (1952). The activities of some 2:4-diaminopteridines and sulphathiazole against Streptococcus faecalis and Staphylococcus aureus. Brit. J. Pharmacol. 7, 161.Google ScholarPubMed
Crowther, A. F. & Levi, A. A. (1953). Proguanil–the isolation of a metabolite with high antimalarial activity. Brit. J. Pharmacol. 8, 93.Google ScholarPubMed
Daniel, L. J. & Norris, L. C. (1947). Growth inhibition of bacteria by synthetic pterins. II. Studies with Escherichia coli, Staphylococcus aureus and Lactobacillus arabinosus showing synergism between pterin and sulfonamide. J. Biol. Chem. 170, 747.CrossRefGoogle Scholar
Daniel, L. J., Norris, L. C., Scott, M. L. & Heuser, G. F. (1947). Growth inhibition of bacteria by synthetic pterins. I. Studies with Streptococcus faecalis, Lactobacillus casei and Lactobacillus arabinosus. J. Biol. Chem. 169, 689.CrossRefGoogle ScholarPubMed
Davey, D. G. (1946). The use of avian malaria for the discovery of drugs effective in the treatment and prevention of human malaria. I. Drugs for clinical treatment and clinical prophylaxis. Ann. Trop. Med. Parasit. 40, 52.CrossRefGoogle Scholar
Elion, G. B. & Hitchings, G. H. (1951). Antagonists of nucleic acid derivatives. V. Pteridines. J. Biol. Chem. 188, 611.CrossRefGoogle ScholarPubMed
Fildes, P. (1940). A rational approach to research in chemotherapy. Lancet, 1, 955.CrossRefGoogle Scholar
Greenberg, J. (1949 a). Inhibition of the antimalarial activity of chlorguanide by pteroylglutamic acid. Proc. Soc. Exp. Biol., N.Y., 71, 306.CrossRefGoogle ScholarPubMed
Greenberg, J. (1949 b). The potentiation of the antimalarial activity of chlorguanide by p–aminobenzoic acid competitors. J. Pharmacol. 97, 238.Google ScholarPubMed
Greenberg, J. (1949 c). The antimalarial activity of 2,4-diamino-6,7-diphenylpterin; its potentiation by sulfadiazine and inhibition by pteroylglutamic acid. J. Pharmacol. 97, 484.Google Scholar
Greenberg, J. (1953). Reversal of the activity of chlorguanide against Plasmodium gallinaceum by free or conjugated p–aminobenzoic acid. Exp. Parasit. 2, 271.CrossRefGoogle Scholar
Greenberg, J., Boyd, B. L. & Josephson, E. S. (1948). Synergistic effect of chlorguanide and sulfadiazine against Plasmodium gallinaceum in the chick. J. Pharmacol. 94, 60.Google ScholarPubMed
Greenberg, J. & Richeson, E. M. (1951). Effect of 2,4-diamino-5-(p–chlorophenoxy)-6-methylpyrimidine and 2,4-diamino-6,7-diphenylpteridine on chlorguanide-resistant strain of Plasmodium gallinaceum. Proc. Soc. Exp. Biol., N.Y., 77, 174.CrossRefGoogle Scholar
Hawking, F. & Thurston, J. P. (1951). A strain of monkey malaria (Plasmodium cynomolgi) made resistant to proguanil (Paludrine). Trans. R. Soc. Trop. Med. Hyg. 44, 695.CrossRefGoogle ScholarPubMed
Hill, J. (1950). The schizonticidal effect of some antimalarials against Plasmodium berghei. Ann. Trop. Med. Parasit. 44, 291.CrossRefGoogle ScholarPubMed
Hitchings, G. H. (1952). Daraprim as an antagonist of folic and folinic acids. Trans. R. Soc. Trop. Med. Hyg. 46, 467.CrossRefGoogle ScholarPubMed
Lampen, J. O. & Jones, M. J. (1946). The antagonism of sulfonamide inhibition of certain lactobacilli and enterococci by pteroylglutamic acid and related compounds. J. Biol. Chem. 166, 435.CrossRefGoogle ScholarPubMed
Maier, J. & Riley, E. (1942). Inhibition of antimalarial action of sulfonamides by p–amino-benzoic acid. Proc. Soc. Exp. Biol., N. Y., 50, 152.CrossRefGoogle Scholar
Marshall, E. K. Jr., Litchfield, J. T. Jr., & White, H. J. (1942). Sulfonamide therapy of malaria in ducks. J. Pharmacol. 75, 89.Google Scholar
McConnachie, E. W. (1953). The action of 2:4-diamino-6:7-diisopropyl pteridine on normal, proguanil- and sulphadiazine-resistant strains of Plasmodium gallinaceum. Parasitology, 42, 272.CrossRefGoogle Scholar
Mudrow-Reichenow, L. (1951). Über die chemotherapeutische Beeinflussbarkeit des Plasmodium berghei Vincke und Lips. Z. Tropenmed. u. Parasit. 2, 471.Google ScholarPubMed
Richardson, A. P., Hewitt, R. I., Seager, L. D., Brooke, M. M., Martin, F. & Maddux, H. (1946). Chemotherapy of Plasmodium knowlesi infections in Macaca mulatto monkeys. J. Pharmacol. 87, 203.Google Scholar
Rollo, I. M. (1951). A 2:4-diaminopyrimidine in the treatment of proguanil-resistant laboratory malarial strains. Nature, Land., 168, 332.CrossRefGoogle Scholar
Sauberlich, H. E. (1949). Relationship of purines, folic acid and other principles in the nutrition of Leuconostoc citrovorum 8081. Fed. Proc. 8, 247.Google Scholar
Schmidt, L. H. & Genther, C. S. (1953). The antimalarial properties of 2:4-diamino-6-p–ehlorophenyl-6-ethylpyrimidine (Daraprim). J. Pharmacol. 107, 61.Google ScholarPubMed
Schmidt, L. H., Genther, C. S., Fradkin, B. & Squires, W. (1949). Development of resistance to chlorguanide (Paludrine) during treatment of infections with Plasmodium cynomolgi. J. Pharmacol. 95, 382.Google ScholarPubMed
Schmidt, L. H., Loo, T. L., Fradkin, R. & Hughes, H. B. (1952). Antimalarial activities of triazine metabolites of chlorguanide and dichlorguanide. Proc. Soc. Exp. Biol., N. Y., 80, 367.CrossRefGoogle ScholarPubMed
Seeler, A. O., Graessle, O. & Dusenbery, E. D. (1943). The effect of para-aminobenzoic acid on the chemotherapeutic activity of the sulfonamides in Lymphogranuloma venereum and in duck malaria. J. Bact. 45, 205.CrossRefGoogle ScholarPubMed
Selbie, F. B. (1940). The inhibition of the action of sulphanilamide in mice by p–aminobenzoic acid. Brit. J. Exp. Path. 21, 90.Google Scholar
Singh, S., Ray, A. P., Basu, P. C. & Nair, C. P. (1952). Acquired resistance to proguanil in Plasmodium knowlesi. Trans. R. Soc. Trap. Med. 46, 639.CrossRefGoogle ScholarPubMed
Terzian, L. A., Stahler, N. & Weathersby, A. B. (1949). The action of antimalarial drugs in mosquitoes infected with Plasmodium gallinaceum. J. Infect. Dis. 84, 47.CrossRefGoogle ScholarPubMed
Thurston, J. P. (1950 a). The action of antimalarial drugs in mice infected with Plasmodium berghei. Brit. J. Pharmacol. 5, 409.Google ScholarPubMed
Thurston, J. P. (1950 b). Action of proguanil on P. berghei. Inhibition by p-aminobenzoic acid. Lancet, 2, 438.CrossRefGoogle Scholar
Thurston, J. P. (1953 a). The morphology of Plasmodium berghei before and after treatment with drugs. Trans. R. Soc. Trap. Med. Hyg. 47, 248.CrossRefGoogle ScholarPubMed
Thurston, J. P. (1953 b). The chemotherapy of Plasmodium berghei. I. Besistance to drugs. Parasitology, 43, 246.CrossRefGoogle ScholarPubMed
Woods, D. D. (1940). The relation of p–aminobenzoic acid to the mechanism of the action of sulphanilamide. Brit. J. Exp. Path. 21, 74.Google Scholar
Woods, D. D. (1950). Biochemical significance of the competition between p–aminobenzoic acid and the sulphonamides. Ann. N.Y. Acad. Sci. 52, 1199.CrossRefGoogle ScholarPubMed