Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T17:48:44.642Z Has data issue: false hasContentIssue false

Characterization of Ca2+ uptake in a subcellular membrane fraction of Herpetomonas sp. promastigotes

Published online by Cambridge University Press:  16 April 2009

C. L. SODRÉ
Affiliation:
Instituto de Bioquímica Médica, ICB/CCS, UFRJ, RJBrazil Instituto Oswaldo Cruz, FIOCRUZ, RJ, Brazil
B. L. M. MOREIRA
Affiliation:
Instituto de Bioquímica Médica, ICB/CCS, UFRJ, RJBrazil
J. R. MEYER-FERNANDES
Affiliation:
Instituto de Bioquímica Médica, ICB/CCS, UFRJ, RJBrazil
P. M. L. DUTRA
Affiliation:
Disciplina de Parasitologia, DMIP, FCM, UERJ, RJ, Brazil
A. H. C. S. LOPES
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia, CCS, UFRJ, RJ, Brazil
H. M. SCOFANO
Affiliation:
Instituto de Bioquímica Médica, ICB/CCS, UFRJ, RJBrazil
H. BARRABIN*
Affiliation:
Instituto de Bioquímica Médica, ICB/CCS, UFRJ, RJBrazil
*
*Corresponding author: Departamento de Bioquímica Médica, ICB/CCS, Cidade Universitária, Universidade Federal do Rio de Janeiro, CEP 21941-590 Rio de Janeiro, RJBrasil. E-mail: barrabin@bioqmed.ufrj.br

Summary

ATP-dependent Ca2+ uptake was studied in a subcellular fraction from Herpetomonas sp. prepared by mechanical disruption and using 45Ca2+ as a tracer. The uptake was stimulated by Ca2+ with a K0·5 of 0·1 μm and a Hill number (nH)=2·8±0·4. The Ca2+-dependent ATP hydrolysis was optimal at pH 7·0 and had a Ca2+ dependence identical to uptake. The uptake was highly stimulated by oxalate whereas calmodulin had no activating effect. ATP stimulated Ca2+ uptake with a biphasic pattern that resembled the curves described for the purified preparations of rabbit sarcoplasmic reticulum. The ATP stimulation is described as the sum of two Michaelis-Menten curves with Km1=0·25±0·19 μm and Km2=29·6±6·8 μm. GTP or UTP could also promote Ca2+ uptake, but with less efficiency than ATP. Vanadate inhibited the uptake with low apparent affinity. Thapsigargin and cyclopiazonic acid were almost ineffective. The Ca2+ uptake was insensitive to H+ ionophores and to bafilomycin suggesting no participation of acidocalcisomes. The results are comparable to those obtained using cells permeabilized with digitonin and using arsenaze III as Ca2+ indicator. The Ca2+ uptake activity described here seems to belong to the endoplasmic reticulum of Herpetomonas sp. and is suitable for further studies on the mechanisms of calcium homeostasis in parasites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attias, M., Roitman, I., Camargo, E. P., Dollet, M. and De Souza, W. (1988). Comparative analysis of the fine structure of four isolates of trypanosomatids of the genus Phytomonas. Journal of Protozoology 35, 365370.CrossRefGoogle Scholar
Berridge, M. J., Bootman, M. D. and Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodeling. Nature Reviews. Molecular Cell Biology 4, 517529.CrossRefGoogle Scholar
Camargo, E. P., Kastelein, P. and Roitman, I. (1990). Trypanosomatid parasites of plants (Phytomonas). Parasitology Today 6, 2225.Google Scholar
Clapham, D. E. (1995). Calcium signaling. Cell 80, 259268.CrossRefGoogle ScholarPubMed
Docampo, R. (1993). Calcium homeostasis in Trypanosoma cruzi. Biological Research 26, 189196.Google ScholarPubMed
Docampo, R. and Vercesi, A. E. (1989). Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. Journal of Biological Chemistry 264, 108111.Google Scholar
Docampo, R., Scott, D. A., Verscesi, A. E. and Moreno, S. N. (1995). Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. The Biochemical Journal 310, 10051012.CrossRefGoogle ScholarPubMed
Fabiato, A. and Fabiato, F. (1979). Calculation programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. Journal of Physiology 75, 463505.Google ScholarPubMed
Freymuller, E., Milder, R., Jankevicius, J. V., Jankevicius, S. I. and Camargo, E. P. (1990). Ultrastructural studies on the trypanosomatid Phytomonas serpens in the salivary glands of a phytophagous Hemipteran. Journal of Protozoology 37, 225229.CrossRefGoogle Scholar
Furuya, T., Okura, M., Ruiz, F. A., Scott, D. A. and Docampo, R. (2001). TcSCA complements yeast mutants defective in Ca2+ pumps and encodes a Ca2+-ATPase that localizes to the endoplasmic reticulum of Trypanosoma cruzi. Journal of Biological Chemistry 276, 3243732445.CrossRefGoogle Scholar
Gornall, A. G., Bardawill, C. J. and David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177, 751766.Google Scholar
Jankevicius, J. V., Jankevicius, S., Campaner, M., Conchon, I., Maeda, L. A., Teixeira, M. M. G. M., Freymuller, S. and Camargo, E. P. (1989). Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. Journal of Protozoology 36, 265271.CrossRefGoogle Scholar
Lu, H. G., Zhong, L., De Souza, W., Benchimol, M., Moreno, S. N. J. and Docampo, R. (1998). Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Molecular and Cellular Biology 18, 23092323.CrossRefGoogle ScholarPubMed
Makinose, M. and Hasselbach, W. (1965). The influence of oxalate on calcium transport of isolated sarcoplasmic reticular vesicles. Biochemische Zeitschrift 343, 360382.Google Scholar
Makinose, M. and The, R. (1965). Calcium accumulation and cleavage of nucleoside triphosphate cleavage by vesicles of sarcoplasmic reticulum. Biochemische Zeitschrift 343, 383393.Google Scholar
Medeiros, L. C. A. S., Moreira, B. L. M., Kildare, M., de Souza, W., Plattner, H., Hentschel, J. and Barrabin, H. (2005). A proton pumping pyrophosphatase in acidocalcisomes of Herpetomonas sp. Molecular and Biochemical Parasitology 140, 175182.CrossRefGoogle Scholar
Miranda, K., Vercesi, A. E., Catisti, R., de Souza, W., Rodrigues, C. and Docampo, R. (2005). P-type proton ATPases are involved in intracellular calcium and proton uptake in the plant parasite Phytomonas francai. Journal Eukaryotic Microbiology 52, 5560.CrossRefGoogle ScholarPubMed
Moreno, S. N. J., Docampo, R. and Vercesi, A. E. (1992). Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release. Journal of Biological Chemistry 267, 60206026.CrossRefGoogle ScholarPubMed
Moysés, D. N. and Barrabin, H. (2004). Rotenone-sensitive mitochondrial potential in Phytomonas serpens. Electrophoretic Ca2+ accumulation. Biochimica et Biophysica Acta-Bioenergetics 1656, 96–103.CrossRefGoogle Scholar
Picard, M., Jensen, A. M., Sørensen, T. L., Champeil, P., Møller, J. V. and Nissen, P. (2007). Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase. Journal of Molecular Biology 368, 17.Google Scholar
Redman, C. A., Schineider, P., Mehlert, A. and Ferguson, A. J. (1995). The glycoinositol-phospholipids of Phytomonas. The Biochemical Journal 311, 495503.Google Scholar
Rodrigues, C. O., Catisti, R., Uyemura, S. A., Vercesi, A. E., Lira, R., Rodrigues, C., Urbina, J. A. and Docampo, R. (2001). The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin permeabilization. Journal of Eukaryotic Microbiology 48, 588595.CrossRefGoogle ScholarPubMed
Schwarzenbach, G., Senn, H. and Anderegg, C. (1957). Komplexone XXIX. Ein grosses chelateffekt besonderer. Helvetica Chimica Acta 40, 18861900.CrossRefGoogle Scholar
Scott, D. A. and Docampo, R. (1998). Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. The Biochemical Journal (London) 331, 583589.CrossRefGoogle ScholarPubMed
Silva, J. L. and Verjowski-Almeida, S. (1981). Different degrees of cooperativity of the Ca2+ – induced changes in fluorescence intensity of solubilized sarcoplasmic reticulum ATPase. Journal of Biological Chemistry 256, 29402944.Google Scholar
Silva, J. L. and Verjowski-Almeida, S. (1983). Self-association and modification of calcium binding in solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry 22, 707716.Google Scholar
Sodré, C. L., Moreira, B. L. M., Nobrega, F. B., Gadelha, F. R., Meyer-Fernandes, J. R., Dutra, P. M. L., Vercesi, A. E., Lopes, A. H. C. S., Scofano, H. M. and Barrabin, H. (2000). Characterization of the intracellular Ca2+ pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes. Archives of Biochemistry and Biophysics 380, 8591.Google Scholar
Sorenson, M. M., Coelho, H. S. L. and Reuben, J. P. (1986). Caffeine inhibition of calcium accumulation by sarcoplasmic reticulum in mammalian skinned fibers. Journal of Membrane Biology 90, 219230.Google Scholar
Sørensen, T. L., Møller, J. V. and Nissen, P. (2004). Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 16721675.CrossRefGoogle ScholarPubMed
Tada, M., Yamamoto, T. and Tonomura, Y. (1978). Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiological Reviews 58, 179.Google Scholar
Vercesi, A. E., Moreno, N. J. S. and Docampo, R. (1994). Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. The Biochemical Journal (London) 304, 227233.CrossRefGoogle ScholarPubMed
Yokoyama, T., Kaya, S., Abe, K., Taniguchi, K., Katoh, T., Yazawa, M., Hayashi, Y. and Mârdh, S. (1999). Acid-labile ATP and/or ADP/P(i) binding to the tetraprotomeric form of Na/K-ATPase accompanying catalytic phosphorylation-dephosphorylation cycle. Journal of Biological Chemistry 274, 3179231796.CrossRefGoogle ScholarPubMed
Zhang, H. S., McDonald, T. V., Tanowitz, H. B., Wittner, M., Weiss, L. M., Bilezikian, J. P. and Morris, S. A. (1998). Intracellular Ca2+ homeostasis in trypomastigotes of Trypanosoma cruzi. Journal Eukaryotic Microbiology 45, 8086.CrossRefGoogle ScholarPubMed