Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T21:13:43.063Z Has data issue: false hasContentIssue false

A calcium-activated nucleotidase secreted from Ostertagia ostertagi 4th-stage larvae is a member of the novel salivary apyrases present in blood-feeding arthropods

Published online by Cambridge University Press:  01 September 2010

D. S. ZARLENGA*
Affiliation:
USDA, ARS, Animal and Natural Resources Institute, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA USDA, ARS, Animal and Natural Resources Institute, Bovine Functional Genomics Laboratory, Beltsville, MD 20705, USA
A. J. NISBET
Affiliation:
Parasitology Division, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK
L. C. GASBARRE
Affiliation:
USDA, ARS, Animal and Natural Resources Institute, Bovine Functional Genomics Laboratory, Beltsville, MD 20705, USA
W. M. GARRETT
Affiliation:
USDA, ARS, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, USA
*
*Corresponding author: US Department of Agriculture, ARS, ANRI, Animal Parasitic Diseases Lab, B1180 BARC-east, Beltsville, MD 20705, USA. Tel: 001 301 504 8754. Fax: 001 301 504 8979. E-mail: dante.zarlenga@ars.usda.gov

Summary

Apyrases (ATP-diphosphohydrolase) comprise a ubiquitous class of glycosylated nucleotidases that hydrolyse extracellular ATP and ADP to orthophosphate and AMP. One class of newly-described, Ca2+-dependent, salivary apyrases known to counteract blood-clotting, has been identified in haematophagous arthropods. Herein, we have identified a gene (Oos-apy-1) encoding a protein that structurally conforms to the Ca2+-activated apyrase from the bed bug, Cimex lectularius, by immunologically screening an Ostertagia L4 cDNA expression library. The expressed protein (rOos-APY-1) was biochemically functional in the presence of Ca2+ only, with greatest activity on ATP, ADP, UTP and UDP. Host antibodies to the fusion protein appeared as early as 14 days post-infection (p.i.) and increased through 30 days p.i. Immunohistochemical and Western blot analyses demonstrated that the native Oos-APY-1 protein is present in the glandular bulb of the oesophagus and is confined to the L4. A putative signal sequence at the N-terminus and near 100% identity with a Teladorsagia circumcincta L4 secreted protein is consistent with the native protein being secreted at the cellular level. Predicated upon substrate specificity, the native protein may be used by the parasite to control the levels of host extracellular nucleotides released by locally-damaged tissues in an effort to modulate immune intervention and inflammation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. M., Oliveira, F., Kamhawi, S., Mans, B. J., Reynoso, D., Seitz, A. E., Lawyer, P., Garfield, M., Pham, M. and Valenzuela, J. G. (2006). Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7, 52. doi:10.1186/1471-2164-7-52CrossRefGoogle ScholarPubMed
Baykov, A. A., Evtushenko, O. A. and Avaeva, S. M. (1988). A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Analytical Biochemistry 171, 266270.CrossRefGoogle ScholarPubMed
Bendtsen, J. D., Nielsen, H., Von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783795.Google Scholar
Bhardwaj, R. and Skelly, P. J. (2009). Purinergic signaling and immune modulation at the schistosome surface? Trends in Parasitology 25, 256260.CrossRefGoogle ScholarPubMed
Bours, M. J., Swennen, E. L. R., Di Virgilio, F., Cronstein, B. N. and Dagnelie, P. C. (2006). Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology & Therapeutics 112, 358404.CrossRefGoogle ScholarPubMed
Charlab, R., Valenzuela, J. G., Rowton, E. D. and Ribeiro, J. M. (1999). Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proceedings of the National Academy of Sciences, USA 96, 1515515160.Google Scholar
Dai, J., Liu, J., Deng, Y., Smith, T. M. and Lu, M. (2004). Structure and protein design of a human platelet function inhibitor. Cell 116, 649659. Erratum in: Cell 117, 413.Google Scholar
DeMarco, R., Kowaltowski, A. T., Mortara, R. A. and Verjovski-Almeida, S. (2003). Molecular characterization and immunolocalization of Schistosoma mansoni ATP-diphosphohydrolase. Biochemical and Biophysical Research Communications 307, 831838.CrossRefGoogle ScholarPubMed
De Marez, T., Cox, E., Claerebout, E., Vercruysse, J. and Goddeeris, B. M. (1997). Induction and suppression of lymphocyte proliferation by antigen extracts of Ostertagia ostertagi. Veterinary Immunology and Immunopathology 57, 6977.CrossRefGoogle ScholarPubMed
Gómez-Muñoz, M. T., Canals-Caballero, A., Almeria, S., Pasquali, P., Zarlenga, D. S. and Gasbarre, L. C. (2004). Inhibition of bovine T lymphocyte responses by extracts of the stomach worm Ostertagia ostertagi. Veterinary Parasitology 120, 199214.Google Scholar
Gounaris, K., Selkirk, M. E. and Sadeghi, S. J. (2004). A nucleotidase with unique catalytic properties is secreted by Trichinella spiralis. Molecular and Biochemical Parasitology 136, 257264.Google Scholar
Gounaris, K. and Selkirk, M. E. (2005). Parasite nucleotide-metabolizing enzymes and host purinergic signalling. Trends in Parasitology 21, 1721.CrossRefGoogle ScholarPubMed
Guevara-Flores, A., Olvera-Sánchez, S., Gómez-Concha, C., Juárez, O., Esparza-Perusquía, M., Pardo, J. P., Mendoza-Hernández, G., Martínez, F. and Flores-Herrera, O. (2008). 5′-p-Fluorosulfonyl benzoyl adenosine inhibits an ecto-ATP-diphosphohydrolase in the tegument surface of Taenia crassiceps cysticerci. Molecular and Biochemical Parasiology 162, 123133.CrossRefGoogle ScholarPubMed
Hamasaki, R., Kato, H., Terayama, Y., Iwata, H. and Valenzuela, J. G. (2009). Functional characterization of a salivary apyrase from the sand fly, Phlebotomus duboscqi, a vector of Leishmania major. Journal of Insect Physiology 55, 10441049.CrossRefGoogle ScholarPubMed
Handa, M. and Guidotti, G. (1996). Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochemical and Biophysical Research Communications 218, 916923.CrossRefGoogle ScholarPubMed
Johnston, M. J., MacDonald, J. A. and McKay, D. M. (2009). Parasitic helminths: a pharmacopeia of anti- inflammatory molecules. Parasitology 136, 125147.Google Scholar
Leal, D. B., Streher, C. A., Neu, T. N., Bittencourt, F. P., Leal, C. A., Da Silva, J. E., Morsch, V. M. and Schetinger, M. R. (2005). Characterization of NTPDase (NTPDase1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochimica et Biophysica Acta 1721, 915.Google Scholar
Li, R. W., Sonstegard, T. S., Van Tassell, C. P. and Gasbarre, L. C. (2007). Local inflammation as a possible mechanism of resistance to gastrointestinal nematodes in Angus heifers. Veterinary Parasitology 145, 100107.CrossRefGoogle ScholarPubMed
MacKinnon, K. M., Burton, J. L., Zajac, A. M. and Notter, D. R. (2009). Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus. Veterinary Immunology and Immunopathology 130, 210220.CrossRefGoogle ScholarPubMed
Maizels, R. M. and Yazdanbakhsh, M. (2003). Immune regulation by helminth parasites: cellular and molecular mechanisms. Nature Reviews. Immunology 3, 733744.Google Scholar
McSorley, H. J., Grainger, J. R., Harcus, Y. M., Murray, J., Nisbet, A. J., Knox, D. P. and Maizels, R. M. (2010). daf-7-related TGF-beta homologues from Trichostrongyloid nematodes show contrasting life-cycle expression patterns. Parasitology 137, 159171.Google Scholar
Murphy, D. M., Ivanenkov, V. V. and Kirley, T. L. (2003). Bacterial expression and characterization of a novel, soluble, calcium-binding, and calcium-activated human nucleotidase. Biochemistry 42, 24122421.CrossRefGoogle ScholarPubMed
Nishikawa, B. K., Fowlkes, D. M. and Kay, B. K. (1989). Convenient uses of polymerase chain reaction in analyzing recombinant cDNA clones. Biotechniques 7, 730735.Google Scholar
Rigby, P. W. J., Dieckmann, M., Rhodes, S. C. and Berg, P. (1977). Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113, 237251.CrossRefGoogle ScholarPubMed
Schulte am Esch, J. 2nd, Sévigny, J., Kaczmarek, E., Siegel, J. B., Imai, M., Koziak, K., Beaudoin, A. R. and Robson, S. C. (1999). Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity. Biochemistry 38, 22482258.CrossRefGoogle ScholarPubMed
Smith, T. M., Hicks-Berger, C. A., Kim, S. and Kirley, T. L. (2002). Cloning, expression, and characterization of a soluble calcium-activated nucleotidase, a human enzyme belonging to a new family of extracellular nucleotidases. Archives of Biochemistry and Biophysics 406, 105115.CrossRefGoogle ScholarPubMed
Smith, S. K., Nisbet, A. J., Meikle, L. I., Inglis, N. F., Sales, J., Beynon, R. J. and Matthews, J. B. (2009). Proteomic analysis of excretory/secretory products released by Teladorsagia circumcincta larvae early post-infection. Parasite Immunology 31, 1019.CrossRefGoogle ScholarPubMed
Smith, W. D., Smith, S. K. and Pettit, D. (2000). Evaluation of immunization with gut membrane glycoproteins of Ostertagia ostertagi against homologous challenge in calves and against Haemonchus contortus in sheep. Parasite Immunology 22, 239247.CrossRefGoogle ScholarPubMed
Snider, T. G. 3rd, Williams, J. C., Knox, J. W., Marbury, K. S., Crowder, C. H. and Willis, E. R. (1988). Sequential histopathologic changes of type I, pre-type II and type II ostertagiasis in cattle. Veterinary Parasitology 27, 169179.CrossRefGoogle ScholarPubMed
Stoschek, C. M. (1990). Quantitation of proteins. Methods in Enzymology 182, 5068.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Trautmann, A. (2009). Extracellular ATP in the immune system: more than just a “danger signal”. Science Signaling 2, pe6. doi: 10.1126/scisignal.256pe6Google Scholar
Uccelletti, D., Pascoli, A., Farina, F., Alberti, A., Mancini, P., Hirschberg, C. B. and Palleschi, C. (2008). APY-1, a novel Caenorhabditis elegans apyrase involved in unfolded protein response signalling and stress responses. Molecular Biology of the Cell 19, 13371345.Google Scholar
Valenzuela, J. G., Belkaid, Y., Rowton, E. and Ribeiro, J. M. (2001). The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. Journal of Experimental Biology 204, 229237.CrossRefGoogle Scholar
Valenzuela, J. G., Charlab, R., Galperin, M. Y. and Ribeiro, J. M. (1998). Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. Journal of Biological Chemistry 273, 3058330590.CrossRefGoogle ScholarPubMed
Vasconcelos, E. G., Ferreira, S. T., Carvalho, T. M., Souza, W., Kettlun, A. M., Mancilla, M., Valenzuela, M. A. and Verjovski-Almeida, S. (1996). Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. Journal of Biological Chemistry 271, 2213922145.CrossRefGoogle ScholarPubMed
Vermeire, J. J, Cho, Y., Lolis, E., Bucala, R. and Cappello, M. (2008). Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends in Parasitology 24, 355363.CrossRefGoogle ScholarPubMed
Wang, S.-Z. and Esen, A. (1985). Screening expression libraries with nonradioactive immunological probes. Gene 37, 267269.Google Scholar
Zarlenga, D. S., Chute, M. B., Gasbarre, L. C. and Boyd, P. C. (2001). A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Veterinary Parasitology 97, 199209.CrossRefGoogle ScholarPubMed