Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T04:10:28.887Z Has data issue: false hasContentIssue false

Blocking factors and the isolation of glutathione transferases from Hymenolepis diminuta (Cestoda: Cyclophyllidea)

Published online by Cambridge University Press:  06 April 2009

P. M. Brophy
Affiliation:
Department of Biological Sciences, University College of Wales, Aberystwyth, Dyfed SY23 3DA, UK
J. Barrett
Affiliation:
Department of Biological Sciences, University College of Wales, Aberystwyth, Dyfed SY23 3DA, UK

Summary

Four acidic glutathione (GSH) transferase forms were isolated from the cytosol of the adult cestode Hymenolepis diminuta by hydroxylapatite chromatography, glutathione-affinity chromatography and chromatofocusing, pH 7–5. The enzymes were dimers of subunit size approximately 24 kDa and accounted for at least 3% of the total soluble protein. The major GSH transferase had limited catalytic activity but may interact with a range of ligands and function as a binding/passive detoxification protein. An endogenous factor interfered with the binding of the crude cytosolic GSH transferase activity to glutathione-dependent affinity matrices but, following partial purification, the GSH transferase activity successfully interacted with the glutathione affinity matrix.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brophy, P. M. (1988). The role of glutathione S-transferase in cestodes. Ph.D. thesis, University College of Wales, Aberystwyth.Google Scholar
Brophy, P. M., Papadopoulos, A., Touraki, M., Coles, B., Körting, W. & Barrett, J. (1989 b). Purification of cytosolic glutathione transferase from Schistocephalus solidus: interaction with anthelmintics and products of lipid peroxidation. Molecular and Biochemical Parasitology 36, 187–97.CrossRefGoogle ScholarPubMed
Brophy, P. M., Southan, C. & Barrett, J. (1989 a). Glutathione transferases in the tapeworm Moniezia expansa. The Biochemical Journal 262, 939–46.CrossRefGoogle ScholarPubMed
Habig, W. H., Pabst, M. J. & Jakoby, W. B. (1974). Glutathione S-transferase: first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–9.CrossRefGoogle Scholar
Hayes, J. (1988). Selective elution of rodent glutathione S-transferases and glyoxalase I from the S-hexylglutathione-Sepharose affinity matrix. The Biochemical Journal 255, 91–22.CrossRefGoogle ScholarPubMed
Jaffe, J. J. & Lambert, R. A. (1986). Glutathione S-transferase in adult Dirofilaria immitis and Brugia pahangi. Molecular and Biochemical Parasitology 20, 199206.CrossRefGoogle ScholarPubMed
Ketterer, B., Meyer, D. J. & Clark, A. G. (1988). Soluble glutathione transferase isozymes. In Glutathione Conjugation: its Mechanism and Biological Significance (ed. Sies, H. & Ketterer, B.), pp. 73135. London: Academic Press.Google Scholar
Mannervik, B. & Guthenberg, C. (1981). Glutathione transferase (human placenta). In Methods in Enzymology vol. 77 (ed. Jakoby, W. B.) pp. 231235, New York: Academic Press.Google Scholar
Munir, W. A. & Barrett, J. (1985). The metabolism of xenobiotic compounds by Hymenolepis diminuta (Cestoda: Cyclophyllidea). Parasitology 19, 145–56.CrossRefGoogle Scholar
Papadopoulos, A., Brophy, P. M., Crowley, P., Ferguson, M. & Barrett, J. (1989). Glutathione transferase in the free living nematode Panagrellus redivivisus. FEBS Letters 253, 76–8.CrossRefGoogle Scholar
Precious, W. & Barrett, J. (1989). Xenobiotic metabolism in helminths. Parasitology Today 5, 156–61.CrossRefGoogle ScholarPubMed
Sedmak, J. J. & Grossberg, S. E. (1977). A rapid sensitive and versatile assay for protein using Coomassie brilliant blue G250. Analytical Biochemistry 79, 544–52.CrossRefGoogle ScholarPubMed
Simons, P. C. & Vander Jagt, D. L. (1977). Purification of glutathione S-transferase from human liver by glutathione affinity chromatography. Analytical Biochemistry 82, 334–41.CrossRefGoogle ScholarPubMed