Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:39:07.170Z Has data issue: false hasContentIssue false

Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes

Published online by Cambridge University Press:  17 June 2016

CRISTINA FONSECA-BERZAL*
Affiliation:
CEI Campus Moncloa, UCM-UPM & CSIC, Madrid, Spain Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
CRISTIANE FRANÇA DA SILVA
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
RUBEM F. S. MENNA-BARRETO
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
MARCOS MEUSER BATISTA
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
JOSÉ A. ESCARIO
Affiliation:
CEI Campus Moncloa, UCM-UPM & CSIC, Madrid, Spain Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
VICENTE J. ARÁN
Affiliation:
CEI Campus Moncloa, UCM-UPM & CSIC, Madrid, Spain Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006 Madrid, Spain
ALICIA GÓMEZ-BARRIO
Affiliation:
CEI Campus Moncloa, UCM-UPM & CSIC, Madrid, Spain Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
MARIA DE NAZARÉ C. SOEIRO
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
*
*Corresponding author: Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain. Tel.: +34 913941818. Fax: +34 3941815. E-mail: crfonseca@pdi.ucm.es

Summary

The phenotypic activity of two 5-nitroindazolinones, i.e. 2-benzyl-1-propyl (22) and 2-benzyl-1-butyl (24) derivatives, previously proposed as anti-Trypanosoma cruzi prototypes, was presently assayed on bloodstream trypomastigotes (BT) of the moderately drug-resistant Y strain. Further exploration of putative targets and cellular mechanisms involved in their activity was also carried out. Therefore, transmission electron microscopy, high-resolution respirometry and flow cytometry procedures were performed on BT treated for up to 24 h with the respective EC50 value of each derivative. Results demonstrated that although 22 and 24 were not as active as benznidazole in this in vitro assay on BT, both compounds triggered important damages in T. cruzi that lead to the parasite death. Ultrastructural alterations included shedding events, detachment of plasma membrane and nuclear envelope, loss of mitochondrial integrity, besides the occurrence of a large number of intracellular vesicles and profiles of endoplasmic reticulum surrounding cytoplasmic organelles such as mitochondrion. Moreover, both derivatives affected mitochondrion leading to this organelle dysfunction, as reflected by the inhibition in oxygen consumption and the loss of mitochondrial membrane potential. Altogether, the findings exposed in the present study propose autophagic processes and mitochondrial machinery as part of the mode of action of both 5-nitroindazolinones 22 and 24 on T. cruzi trypomastigotes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida-de-Faria, M., Freymüller, E., Colli, W. and Alves, M. J. (1999). Trypanosoma cruzi: characterization of an intracellular epimastigote-like form. Experimental Parasitology 92, 263274.Google Scholar
Bahia, M. T., Figuereido Diniz, L. and Mosqueira, V. C. F. (2014). Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opinion on Investigational Drugs 23, 12251237.Google Scholar
Boiani, L., Gerpe, A., Arán, V. J., Torres de Ortiz, S., Serna, E., Vera de Bilbao, N., Sanabria, L., Yaluff, G., Nakayama, H., Rojas de Arias, A., Maya, J. D., Morello, J. A., Cerecetto, H. and González, M. (2009). In vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles. European Journal of Medicinal Chemistry 44, 10341040.Google Scholar
Boiani, M., Piacenza, L., Hernández, P., Boiani, L., Cerecetto, H., González, M. and Denicola, A. (2010). Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochemical Pharmacology 79, 17361745.Google Scholar
Brennand, A., Gualdrón-López, M., Coppens, I., Rigden, D. J., Ginger, M. L. and Michels, P. A. M. (2011). Autophagy in parasitic protists: unique features and drug targets. Molecular and Biochemical Parasitology 177, 8399.Google Scholar
Da Silva, C. F., Batista, M. M., Batista, D. G. J., de Souza, E. M., da Silva, P. B., de Oliveira, G. M., Meuser, A. S., Shareef, A. R., Boykin, D. W. and Soeiro, M. N. C. (2008). In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi . Antimicrobial Agents and Chemotherapy 52, 33073314.Google Scholar
Da Silva, C. F., Batista, D. G. J., de Araújo, J. S., Batista, M. M., Lionel, J., de Souza, E. M., Ripoll Hammer, E., da Silva, P. B., de Mieri, M., Adams, M., Zimmermann, S., Hamburger, M., Brun, R., Schühly, W. and Soeiro, M. N. C. (2013). Activities of Psilostachyin A and Cynaropicrin against Trypanosoma cruzi in vitro and in vivo . Antimicrobial Agents and Chemotherapy 57, 53075314.CrossRefGoogle ScholarPubMed
Da Silva, C. F., Batista, D. G. J., Batista, M. M., Lionel, J., Ripoll Hammer, E., Brun, R. and Soeiro, M. N. C. (2014). In vitro and in vivo activity of the chloroaryl-substituted imidazole viniconazole against Trypanosoma cruzi . Parasitology 141, 367373.Google Scholar
Faucher, J. F., Baltz, T. and Petry, K. G. (1995). Detection of an “epimastigote-like” intracellular stage of Trypanosoma cruzi . Parasitology Research 81, 441443.CrossRefGoogle ScholarPubMed
Fernandes, M. C., Da Silva, E. N. Jr., Pinto, A. V., de Castro, S. L. and Menna-Barreto, R. F. S. (2012). A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi . Parasitology 139, 2636.CrossRefGoogle ScholarPubMed
Folch-Cano, C., Olea-Azar, C., Arán, V. J. and Díaz-Urrutia, C. (2010). ESR and electrochemical study of 1,2-disubstituted 5-nitroindazolin-3-ones and 2-substituted 3-alkoxy-5-nitro-2H-indazoles: reactivity and free radical production capacity in the presence of biological systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75, 375380.CrossRefGoogle Scholar
Fonseca-Berzal, C., Escario, J. A., Arán, V. J. and Gómez-Barrio, A. (2014). Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitology Research 113, 10491056.Google Scholar
Fonseca-Berzal, C., da Silva, P. B., da Silva, C. F., Vasconcelos, M., Batista, M. M., Escario, J. A., Arán, V. J., Gómez-Barrio, A. and Soeiro, M. N. C. (2015). Exploring the potential activity spectrum of two 5-nitroindazolinone prototypes on different Trypanosoma cruzi strains. Parasitology Open 1, e1.Google Scholar
Gascón, J., Bern, C. and Pinazo, M. J. (2010). Chagas disease in Spain, the United States and other non-endemic countries. Acta Tropica 115, 2227.Google Scholar
Gonçalves, R. L. S., Menna-Barreto, R. F. S., Polycarpo, C. R., Gadelha, F. R., de Castro, S. L. and Oliveira, M. F. (2011). A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi . Journal of Bioenergetics and Biomembranes 43, 651661.CrossRefGoogle ScholarPubMed
Irigoín, F., Cibils, L., Comini, M. A., Wilkinson, S. R., Flohe, L. and Radi, R. (2008). Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine 45, 733742.Google Scholar
Kim, I., Rodríguez-Enríquez, S. and Lemasters, J. J. (2007). Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics 462, 245253.Google Scholar
Luize, P. S., Ueda-Nakamura, T., Dias Filho, B. P., García Cortez, D. A., Morgado-Díaz, J. A., de Souza, W. and Nakamura, C. V. (2006). Ultrastructural alterations induced by the neolignan dihydrobenzofuranic eupomatenoid-5 on epimastigote and amastigote forms of Trypanosoma cruzi . Parasitology Research 100, 3137.Google Scholar
Maya, J. D., Bollo, S., Nuñez-Vergara, L. J., Squella, J. A., Repetto, Y., Morello, A., Périe, J. and Chauvière, G. (2003). Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochemical Pharmacology 65, 9991006.Google Scholar
Menna-Barreto, R. F. S., Laranja, G. A. T., Silva, M. C. C., Coelho, G. P., Paes, M. C., Oliveira, M. M. and de Castro, S. L. (2008). Anti-Trypanosoma cruzi activity of Pterodon pubescens seed oil: geranylgeraniol as the major bioactive component. Parasitology Research 103, 111117.Google Scholar
Menna-Barreto, R. F. S., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and de Castro, S. L. (2009 a). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157168.Google Scholar
Menna-Barreto, R. F. S., Corrêa, J. R., Cascabulho, C. M., Fernandes, M. C., Pinto, A. V., Soares, M. J. and de Castro, S. L. (2009 b). Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi . Parasitology 136, 499510.Google Scholar
Menna-Barreto, R. F. S., Goncalves, R. L. S., Costa, E. M., Silva, R. S. F., Pinto, A. V., Oliveira, M. F. and de Castro, S. L. (2009c). The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radical Biology & Medicine 47, 644653.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F. S. and de Castro, S. L. (2014). The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. BioMed Research International 2014, Article ID 614014, 14 pages, doi: 10.1155/2014/614014.Google Scholar
Miranda, C. G., Solana, M. E., Curto, M. A., Lammel, E. M., Schijman, A. G. and Soto, C. D. A. (2015). A flow cytometer-based method to simultaneously assess activity and selectivity of compounds against the intracellular forms of Trypanosoma cruzi . Acta Tropica 152, 816.Google Scholar
Muro, B., Reviriego, F., Navarro, P., Marín, C., Ramírez-Macías, I., Rosales, M. J., Sánchez-Moreno, M. and Arán, V. J. (2014). New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles. European Journal of Medicinal Chemistry 74, 124134.Google Scholar
Pinto, A. V. and de Castro, S. L. (2009). The trypanocidal activity of naphthoquinones: a review. Molecules 14, 45704590.Google Scholar
Rodríguez, J., Gerpe, A., Aguirre, G., Kemmerling, U., Piro, O. E., Arán, V. J., Maya, J. D., Olea-Azar, C., González, M. and Cerecetto, H. (2009 a). Study of 5-nitroindazoles’ anti-Trypanosoma cruzi mode of action: electrochemical behaviour and ESR spectroscopic studies. European Journal of Medicinal Chemistry 44, 15451553.Google Scholar
Rodríguez, J., Arán, V. J., Boiani, L., Olea-Azar, C., Lavaggi, M. L., González, M., Cerecetto, H., Maya, J. D., Carrasco-Pozo, C. and Speisky Cosoy, H. (2009 b). New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: synthesis, biological evaluation, and mechanism of action studies. Bioorganic and Medicinal Chemistry 17, 81868196.CrossRefGoogle ScholarPubMed
Silva, L. H. and Nussenzweig, V. (1953). Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folha Clinica e Biologica 20, 191207.Google Scholar
Silva Paes, L., Suarez Mantilla, B., Barisón, M. J., Wrenger, C. and Silber, A. M. (2011). The uniqueness of the Trypanosoma cruzi mitochondrion: opportunities to target new drugs against Chagas’ disease. Current Pharmaceutical Design 17, 20742099.Google Scholar
Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. Journal of Physiology 552, 335344.Google Scholar
Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine 25, 211220.Google Scholar
Tyler, K. M. and Engman, D. M. (2001). The life cycle of Trypanosoma cruzi revisited. International Journal for Parasitology 31, 472481.Google Scholar
Vannier-Santos, M. A. and de Castro, S. L. (2009). Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Current Drug Targets 10, 246260.Google Scholar
Vega, M. C., Rolón, M., Montero-Torres, A., Fonseca-Berzal, C., Escario, J. A., Gómez-Barrio, A., Gálvez, J., Marrero-Ponce, Y. and Arán, V. J. (2012). Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. European Journal of Medicinal Chemistry 58, 214227.Google Scholar
Veiga-Santos, P., Desoti, V. C., Miranda, N., Ueda-Nakamura, T., Dias-Filho, B. P., Silva, S. O., García Cortez, D. A., de Mello, J. C. and Nakamura, C. V. (2013). The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi . Acta Tropica 125, 349356.Google Scholar
Vercesi, A. E., Bernardes, C. F., Hoffmann, M. E., Gadelha, F. R. and Docampo, R. (1991). Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ . Journal of Biological Chemistry 266, 1443114434.Google Scholar
Wilkinson, S. R. and Kelly, J. M. (2009). Trypanocidal drugs: mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine 11, e31.Google Scholar
World Health Organization (2015). Investing to Overcome the Global Impact of Neglected Tropical Diseases, Third WHO Report on Neglected Tropical Diseases. Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva.Google Scholar