Skip to main content Accessibility help

Anti-Trichomonas vaginalis activity of 1,10-phenanthroline-5,6-dione-based metallodrugs and synergistic effect with metronidazole

  • Graziela Vargas Rigo (a1), Brenda Petro-Silveira (a1), Michael Devereux (a2), Malachy McCann (a3), André Luis Souza dos Santos (a4) and Tiana Tasca (a1)...


Trichomonas vaginalis is responsible for the most common non-viral, sexually transmitted infection, human trichomoniasis, and is associated with an increased susceptibility to HIV. An escalation in resistance (2.5–10%) to the clinical drug, metronidazole (MTZ), has been detected and this compound also has adverse side-effects. Therefore, new treatment options are urgently required. Herein, we investigate the possible anti-T. vaginalis activity of 1,10-phenanthroline-5,6-dione (phendione) and its metal complexes, [Ag(phendione)2]ClO4 and [Cu(phendione)3](ClO4)2·4H2O. Minimum inhibitory concentration (MIC) against T. vaginalis ATCC 30236 and three fresh clinical isolates and mammalian cells were performed using serial dilution generating IC50 and CC50 values. Drugs combinations with MTZ were evaluated by chequerboard assay. A strong anti-T. vaginalis activity was found for all test compounds. IC50 values obtained for [Cu(phendione)3](ClO4)2·4H2O were similar or lower than those obtained for MTZ. In vitro assays with normal cells showed low cytotoxicity and [Cu(phendione)3](ClO4)2·4H2O presented a high selectivity index (SI) for fibroblasts (SI = 11.39) and erythrocytes (SI > 57.47). Chequerboard assay demonstrated that the combination of [Cu(phendione)3](ClO4)2·4H2O with MTZ leads to synergistic interaction, which suggests distinct mechanisms of action of the copper–phendione complex and avoiding the MTZ resistance pathways. Our results highlight the importance of phendione-based drugs as potential molecules of pharmaceutical interest.


Corresponding author

Author for correspondence: Tiana Tasca, E-mail:


Hide All
Allardyce, CS and Dyson, PJ (2016) Metal-based drugs that break the rules. Dalton Transactions 45, 32013209. doi: 10.1039/c5dt03919c.
Bala, V and Chhonker, YS (2018) Recent developments in anti-Trichomonas research: An update review. European Journal of Medicinal Chemistry 143, 232243. doi: 10.1016/j.ejmech.2017.11.029.
Becker, DL, dos Santos, O, Frasson, AP, Rigo, GV, Macedo, AJ and Tasca, T (2015) High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infection, Genetics and Evolution 34, 181187.
Chesson, HW, Blandford, JM and Pinkerton, SD (2004) Estimates of the annual number and cost of new HIV infections among women attributable to trichomoniasis in the United States. Sexually Transmitted Diseases 31, 547551. PMID: 15480116.
Diamond, LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. The Journal of Parasitology 43, 488490.
Eshwika, A, Coyle, B, Devereux, M, McCann, M and Kavanagh, K (2004) Metal complexes of 1,10-phenanthroline-5,6-dione alter the susceptibility of the yeast Candida albicans to amphotericin B and miconazole. Biometals 17, 415422.
Granato, MQ, Gonçalves, DS, Seabra, SH, McCann, M, Devereux, M, Dos Santos, A and Kneipp, LF (2017) 1,10-Phenanthroline-5,6-dione–based compounds are effective in disturbing crucial physiological events of Phialophora verrucosa. Frontiers in Microbiology 8, 76.
Hopper, M, Yun, JF, Zhou, B, Le, C, Kehoe, K, Le, R, Hill, R, Jongeward, G, Debnath, A, Zhang, L, Miyamoto, Y, Eckmann, L, Kirkwood, M and Wrischnik, LA (2016) Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. International Journal of Antimicrobial Agents 48, 690694. doi: 10.1016/j.ijantimicag.2016.09.020.
Hübner, DPG, Vieira, PB, Frasson, AP, Menezes, CB, Senger, FR, Santos da Silva, GN, Gnoatto, SCB and Tasca, T (2016) Anti-Trichomonas vaginalis activity of betulinic acid derivatives. Biomedicine & Pharmacotherapy 84, 476484.
Kiss, T, Fenyvesi, F, Bácskay, I, Váradi, J, Fenyvesi, E, Iványi, R, Szente, L, Tósaki, A and Vecsernyés, M (2010) Evaluation of the cytotoxicity of β-cyclodextrin derivatives: evidence for the role of cholesterol extraction. European Journal of Pharmaceutical Sciences 40, 376380.
Kissinger, P (2015) Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infectious Diseases 15, 307. doi: 10.1186/s12879-015-1055-0.
McCann, M, Coyle, B, McKay, S, McCormack, P, Kavanagh, K, Devereux, M, McKee, V, Kinsella, P, O'Connor, R and Clynes, M (2004) Synthesis and X-ray crystal structure of [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells. Biometals 17, 635645.
McCann, M, Santos, ALS, Silva, BA, Romanos, MTV, Pyrrho, AS, Devereux, M, Kavanagh, K, Fichtner, I and Kellett, A (2012) In vitro and in vivo studies into the biological activities of 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione and its copper(II) and silver(I) complexes. Toxicology Research 1, 4754.
Menezes, CB, Frasson, AP and Tasca, T (2016) Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial cell 3, 404419.
Newman, DJ, Cragg, GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products 75, 311335. doi: 10.1021/np200906s.
Odds, FC (2003) Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy 52, 1.
Owusu-Edusei, K Jr, Chesson, HW, Gift, TL, Tao, G, Mahajan, R, Ocfemia, MC and Kent, CK (2013) The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sexually Transmitted Diseases 40, 197201.
Schwebke, JR and Barrientes, FJ (2006) Prevalence of Trichomonas vaginalis isolates with resistance 185 to metronidazole and tinidazole. Antimicrobial Agents and Chemotherapy 50, 42094210.
Secor, WE, Meites, E, Starr, MC and Workowski, KA (2014) Neglected parasitic infections in the United States: trichomoniasis. The American Journal of Tropical Medicinal and Hygiene 90, 800804.
Tóth, B, Hohmann, J and Vasas, A (2017) Phenanthrenes: a promising group of plant secondary metabolites. Journal of Natural Products 81, 661678.
Van Der Pol, B, Kwok, C, Pierre-Louis, B, Rinaldi, A, Salata, RA, Chen, PL, Van de Wijgert, J, Mmiro, F, Mugerwa, R, Chipato, T and Morrison, CS (2008) Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. The Journal of Infectious Diseases 197, 548554.
Vieira, PB, Giordani, RB, Macedo, AJ, Tasca, T (2015) Natural and synthetic compound anti-Trichomonas vaginalis: an update review. Parasitology Research 114, 12491261. doi: 10.1007/s00436-015-4340-3.
Vieira, PB, Silva, NLF, Menezes, CB, Silva, MV, Silva, DB, Lopes, NP, Macedo, AJ, Bastida, J and Tasca, T (2017 a) Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula. PLoS One 12, e0188531.
Vieira, PB, Tasca, T and Secor, WE (2017 b) Challenges and persistent questions in the treatment of Trichomoniasis. Current Topics in Medicinal Chemistry 17, 12491265.
Viganor, L, Galdino, AC, Nunes, AP, Santos, KR, Branquinha, MH, Devereux, M, Kellett, A, McCann, M and Santos, AL (2016) Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. Journal of Antimicrobial Chemotherapy 71, 128134.
World Health Organization (2012) Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections – 2008. Geneva: World Health Organization. Available at


Type Description Title
Supplementary materials

Vargas Rigo et al. supplementary material
Figure S1

 Unknown (1.6 MB)
1.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed