Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T07:37:18.507Z Has data issue: false hasContentIssue false

An ultrastructural analysis of cyst wall development in the metacestode of Hymenolepis diminuta (Cestoda)

Published online by Cambridge University Press:  06 April 2009

K. Sylvia Richards
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG

Summary

A series of development stages (I–XI) have been devised to describe the development of the cyst wall of the metacestode of Hymenolepis diminuta. The cyst wall possesses tegumentary, muscular, fibrous and inner cyst tissues, the developmental rates and differentiation patterns of which are not identical. The tegumentary tissue differentiates posteriorly. Its microvillus-bearing distal cytoplasm remains simple until scolex retraction, after which rapid increase in depth followed by vacuolation occurs and basal membrane infoldings surround Phase 3 fibrogenesis fibrils. Senescence, which also affects the tegumentary cytons, then ensues. The muscle system development is posteriad and maturation, completed before scolex retraction, is followed by myocyton senescence. Posteriorly differentiated fibroblasts commence Phase 1 fibrogenesis after scolex retraction and the primary fibrous zone is fully established within approximately 6 days. Phase 2 and 3 fibrogenesis develop centrifugally, the fibrils of Phase 2 surrounding the tegumentary cytons and myocytons prior to their senescence, and those of Phase 3 lying more peripherally. The inner cyst tissue, established posteriorly, differentiates anteriorly, centripetally and early, the penultimate stage commencing just before scolex retraction, about 6 days after which the final maturation junctional complexes start development. Neither in vitro excystment nor infectivity of the definitive host can be satisfactorily achieved before the initial development of the primary fibrous zone. This may play a skeletal role during excystment, and is shown to be unaffected by the digestive enzymes which cause loss of cytoplasmic integrity in the outer regions of the cyst.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, V. F., Ubelaker, J. E. & Cooper, N. B. (1972). The fine structure of the cysticercoid of Hymenolepis diminuta. II. The inner wall of the capsule. Zeitschrift für Parasitenkunde 39, 137–47.Google Scholar
Bogitsh, B. J. (1969). Fine structural localization of acid phosphatase and aryl sulphatase activity in the intermediate layer of Hymenolepis diminuta cysticercoids. Transactions of the American Microscopical Society 88, 411–19.Google Scholar
Caley, J. (1974). The functional significance of scolex retraction and subsequent cyst formation in the cysticercoid larva of Hymenolepis microstoma. Parasitology 68, 207–27.CrossRefGoogle ScholarPubMed
Caley, J. (1976). Ultrastructural studies of the cysticercoid of Moniezia expansa (Anoplocephalidae) with special reference to the development of the cyst. Zeitschrift für Parasitenkunde 48, 251–62.CrossRefGoogle Scholar
Collin, W. K. (1970). Electron microscopy of postembryonic stages of the tapeworm Hymenolepis citelli. Journal of Parasitology 56, 1159–70.Google Scholar
Cooper, N. B., Allison, V. F. & Ueelaker, J. E. (1975). The fine structure of the cysticercoid of Hymenolepis diminuta. III. The scolex. Zeitschrift für Parasitenkunde 46, 229–39.Google Scholar
Euzet, L. & Gabrion, C. (1976). Mise en évidence d'un gradient de différenciation du tégument chez la larve de deux Cestodes Cyclophyllides. Comptes rendues de l'Académie des Sciences, Paris 283 (series D), 367–70.Google Scholar
Gabrion, C. & Verdier, J.-M. (1978). Étude ultrastructurale du cysticercoïde de Hymenolepis stylosa (Cestoda, Cyclophyllidea). Annales de Parasitologie humaine et comparée 53, 131–46.Google Scholar
Jeffs, S. A. & Arme, C. (1982). Hymenolepis diminuta: uptake of amino acids by cysticercoid larva. Parasitology 85, lxii.Google Scholar
Krasnoshchekov, G. P., Moczóu, T. & Pluzhnikov, L. T. (1979). Ultrastructure of the cyst of Hymenolepis diminuta larvae. Folia Parasitologica (Praha) 26, 245–51.Google Scholar
Lackie, A. M. (1975). The activation of infective stages of endoparasites of vertebrates. Biological Reviews 50, 285323.Google Scholar
Lewis, P. R. & Knight, D. P. (1977). Staining methods for sectioned material. Practical Methods in Electron Microscopy, vol. 5, part 1 (ed. Glauert, A. M.). Amsterdam: North-Holland.Google Scholar
Lumsden, R. D. & Specian, R. (1980). The morphology, histology, and fine structure of the adult stage of the cyclophyllidean tapeworm Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 157280. New York and London: Academic Press.Google Scholar
Lumsden, R. D., Voge, M. & Sogandares-Bernal, F. (1982). The metacestode integument: fine structure, development, topochernistry, and interactions with the host. In Cysticercosis: Present State of Knowledge and Perspectives, (ed. Flisser, A., Willms, K., Laclette, J. P., Larralde, C., Ridaura, C. and Beltrán, F.), pp. 307–61. New York and London: Academic Press.Google Scholar
Phillips, A. A. & Arme, C. (1983). Hymenolepis diminuta: monosaccharide transport by cysticercoids. Parasitology 87, lxiii.Google Scholar
Richards, K. S. & Arme, C. (1983 a). The rostellar tegumentary cytoplasm of the metacestode of Hymenolepis diminuta (Cyclophyllidea: Cestoda). Parasitology 86, 83–8.Google Scholar
Richards, K. S. & Arme, C. (1983 b). Junctional complexes in the inner cyst tissue of the cysticercoid of Hymenolepis diminuta (Cestoda). Parasitology 87, 295306.Google Scholar
Richards, K. S. & Arme, C. (1984). Maturation of the scolex syncytium in the metacestode of Hymenolepis diminuta, with special reference to microthrix formation. Parasitology 88, 341–9.Google Scholar
Torre-Blanco, A. (1982). The collagen of Cysticercus cellulosae: a study in the comparative biochemistry of collagen. In Cysticercosis: Present State of Knowledge and Perspectives (ed. Flisser, A., Willms, K., Laclette, J. P., Larralde, C., Ridaura, C. and Beltrán, F.), pp. 423–36. New York and London: Academic Press.Google Scholar
Ubelaker, J. E. (1980). Structure and ultrastructure of the larvae and metacestodes of Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 59156. New York and London: Academic Press.Google Scholar
Ubelaker, J. E., Cooper, N. B. & Allison, V. F. (1970). The fine structure of the cysticercoid of Hymenolepis diminuta. I. The outer wall of the capsule. Zeitschrift für Parasitenkunde 34, 258–70.Google Scholar
Voge, M. (1960). Studies in cysticercoid histology. IV. Observations on histogenesis in the cysticercoid of Hymenolepis diminuta (Cestoda: Cyclophyilidea). Journal of Parasitology 46, 717–25.Google Scholar
Voge, M. & Heyneman, D. (1957). Development of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Hymenolepididae) in the intermediate host Tribolium confusum. University of California Publications in Zoology 59, 549–80.Google Scholar
Warren, R. H. (1968). The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera). Journal of Cell Biology 39, 544–55.Google Scholar
Webb, R. A. (1977). The organization and fine structure of the muscles of the scolex of the cysticercoid of Hymenolepis microstoma. Journal of Morphology 154, 339–56.CrossRefGoogle ScholarPubMed