Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T00:17:55.491Z Has data issue: false hasContentIssue false

Physiology of obliquely striated muscle fibres within Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha)

Published online by Cambridge University Press:  06 April 2009

S. M. Ward
Affiliation:
Biomedical Sciences Research Centre, University of Ulster, Coleraine, Co. Londonderry BT52 1SA, Northern Ireland
J. M. Allen
Affiliation:
Biomedical Sciences Research Centre, University of Ulster, Coleraine, Co. Londonderry BT52 1SA, Northern Ireland
G. McKerr
Affiliation:
Biomedical Sciences Research Centre, University of Ulster, Coleraine, Co. Londonderry BT52 1SA, Northern Ireland

Summary

The tentacular bulb of Grillotia erinaceus metacestodes consists of obliquely striated muscle fibres with obvious motor end-plates. In this study isometric tension recordings and intracellular microelectrodes have been used to record mechanical and electrical activity from single isolated bulbs. Bulbs were mechanically quiescent and displayed resting membrane polentials (RMP) in the region of −49 to −64 mV with a mean RMP of −56 mV (n = 60). The membrane potential varied with [K+]o in a manner consistent with the RMP being determined largely by the K+ equilibrium potential. High K+ solution (> 15 mM) caused membrane depolarization and contraction of the preparation with the contraction showing both phasic and tonic components. L-glutamate caused membrane depolarization, contraction of quiescent preparations and increased the amplitude of electrically evoked responses. In contrast, 5-HT, dopamine, histamine, adrenaline, GABA, noradrenaline and D-glutamate, at concentrations up to and including 10−3 M, were without apparent affect, although acetylcholine, at relatively high concentrations (≥ 10−4 M) slightly reduced the amplitude of field-evoked contractions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anwyl, R. (1977). Permeability of the post-synaptic membrane of an excitatory glutamate synapse to sodium and potassium. Journal of Physiology 273, 367–88.CrossRefGoogle ScholarPubMed
Anwyl, R. & Usherwood, P. N. R. (1974). Voltage clamp of glutamate synapse. Nature, London 252, 591–3.CrossRefGoogle ScholarPubMed
Brezden, B. L. & Gardner, D. R. (1984). The ionic basis of the resting potential in a cross-striated muscle of the aquatic snail Lymnaea stagnalis. Journal of Experimental Biology 108, 305–14.CrossRefGoogle Scholar
Clements, A. & May, T. E. (1974). Pharmacological studies on a locust neuromuscular preparation. Journal of Experimental Biology 61, 421–42.CrossRefGoogle ScholarPubMed
Del Castillo, J., De Mello, W. C. & Morales, T. (1963). The physiological role of acetylcholine in the neuromuscular system of Ascaris lumbricoides. Archives Internationales de Physiologies et de Biochimie 71, 741–57.CrossRefGoogle Scholar
Druguid, A. M. E. & Heathcote, R. St A. (1950). The action of drugs in vitro on cestodes II. Non-anthelmintic drugs. Archives Internationales de Pharmacodynamie et de Therapie 84, 159175.Google Scholar
Goldman, D. E. (1943). Potential, impedance and rectification in membranes. Journal of General Physiology 27, 3760.CrossRefGoogle ScholarPubMed
Gorman, A. L. F. & Marmor, M. F. (1970). Contribution of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. Journal of Physiology 210, 897917.CrossRefGoogle Scholar
Hadley, R. D., Murphy, A. D. & Kater, S. B. (1980). Ionic basis of resting and action potentials in salivary gland acinar cells of the snail Helisoma. Journal of Experimental Biology 84, 213–25.CrossRefGoogle Scholar
Haldeman, S. & McLennan, H. (1972). The antagonistic action of glutamic acid diethylester towards amino acid induced and synaptic excitations of thalmic neurons. Brain Research 45, 123–9.CrossRefGoogle Scholar
Hodgkin, A. L. (1958). Ionic movements and electrical activity in giant nerve fibres. Proceedings of the Royal Society of London, B 148, 137.Google ScholarPubMed
Hodgkin, A. L. & Horowitz, P. (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. Journal of Physiology 148, 127–60.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Horowitz, P. (1960). Potassium contractures in single muscle fibres. Journal of Physiology 153, 384403.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. Journal of Physiology 108, 3777.CrossRefGoogle ScholarPubMed
Huddart, H. (1975). The Comparative Structure and Function of Muscle. Pergamon Press.Google Scholar
Jahromi, S. S. & Atwood, H. L. (1971). Structural and contractile properties of lobster leg-muscle fibres. Journal of Experimental Zoology 176, 475–86.CrossRefGoogle Scholar
James, V. A., Walker, R. J. & Wheal, H. V. (1980). Structure-activity studies on an excitatory receptor for glutamate on leech retzius neurons. British Journal of Pharmacology 68, 711–17.CrossRefGoogle Scholar
Jan, L. Y. & Jan, Y. N. (1976). L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. Journal of Physiology 262, 215–36.CrossRefGoogle ScholarPubMed
Kerkut, G. A., Leake, D. D., Shapira, A., Cowan, S. & Walker, E. J. (1965). The presence of glutamate in nerve muscle perfusates of Helix, Carcinus and Periplanata. Comparative Biochemistry and Physiology 15, 485502.CrossRefGoogle Scholar
Kerkut, G. A., Shapira, A. & Walker, R. J. (1965). The effect of acetylcholine, glutamic acid and GABA on the contractions of the perfused cockroach leg. Comparative Biochemistry and Physiology 16, 3748.CrossRefGoogle ScholarPubMed
Kidokoro, Y., Hugiwara, S. & Henkart, M. (1974). Electrical properties of obliquely striated muscle fibre membrane of Anodonta glochidium. Journal of Comparative Physiology 90, 321–38.CrossRefGoogle Scholar
Lowagie, C. & Gerschenfeld, H. M. (1974). Glutamic acid antagonists at the crayfish neuromuscular junction. Nature, London 248, 533–5.CrossRefGoogle Scholar
Lumsden, R. D. & Byram, , (1967). The ultrastructure of cestode muscle. Journal of Parasitology 54, 780–94.CrossRefGoogle Scholar
Lumsden, R. D. & Hildreth, M. B. (1983). The fine structure of adult tapeworms. In Biology of the Eucestoda, pp. 177233. Vol. 1 (ed. Arme, C. & Pappas, P. W.). London: Academic Press.Google Scholar
McLennan, H. (1974). Actions of excitatory amino acids and their antagonism. Neuropharmacology 13, 449–54.CrossRefGoogle ScholarPubMed
Moreton, R. B. (1968). An application of the constant field theory to the behaviour of giant neurons of the snail Helix aspersa. Journal of Experimental Biology 48, 611–23.CrossRefGoogle Scholar
Neal, H. (1975). Neuromuscular junctions and L-glutamate sensitive sites in the flesh fly, Sarcophage bullata. Journal of Insect Physiology 21, 1945–51.CrossRefGoogle Scholar
Onodera, K. & Takeuchi, A. (1975). Ionic mechanism of the excitatory synaptic membrane of the crayfish neuromuscular junction. Journal of Physiology 252, 295318.CrossRefGoogle ScholarPubMed
Paasonen, M. K. & Varitianinen, A. (1958). Pharmacological studies of the body wall musculature of the cat tapeworm (Taenia taeniaeformis). Acta Pharmacologica et Toxicologica 15, 2936.CrossRefGoogle ScholarPubMed
Parnas, I. & Atwood, H. L. (1966). Phasic and tonic neuromuscular systems in the abdominal extensor muscles of the crayfish and rock lobster. Comparative Biochemistry and Physiology 18, 701–23.CrossRefGoogle ScholarPubMed
Reuben, J. P., Brandt, P. W., Garcia, H. & Grundfest, H. (1967). Excitation-contraction coupling in crayfish. American Zoologist 7, 623–45.CrossRefGoogle ScholarPubMed
Storm-Mathisen, J. (1977). Localization of transmitter candidates in brain hippocampo formation as a model. Progress in Neurobiology 8, 119–81.CrossRefGoogle Scholar
Syson, A. J. & Huddart, H. (1973). Contracture tension in rat vas deferens and ileal smooth muscle and its modification by external calcium and the tonicity of the medium. Comparative Biochemistry and Physiology 45A, 345–62.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Onodera, K. (1973). Reversal potentials of the excitatory transmitter and L-glutamate at the crayfish neuromuscular junction. Nature, London 242, 124–6.Google ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1964). The effect on crayfish muscle of iontophoretically applied glutamate. Journal of Physiology 170, 296317.CrossRefGoogle ScholarPubMed
Thompson, C. S. & Mettrick, D. F. (1984). Neuromuscular physiology of Hymenolepis diminuta and Hymenolepis microstoma (Cestoda). Parasitology 89, 567–78.CrossRefGoogle Scholar
Thompson, D. P., Pax, R. A. & Bennett, J. L. (1982). Microelectrode studies of the tegument and sub-tegumental compartments of male Schistosoma mansoni: an analysis of electrophysiological properties. Parasitology 85, 163–78.CrossRefGoogle ScholarPubMed
Usherwood, P. & Mackili, P. (1968). Pharmacological properties of excitatory neuromuscular synapses in the locust. Journal of Experimental Biology 49, 341–61.CrossRefGoogle Scholar
Ward, S. M., Allen, J. M. & McKerr, G. (1986). Neuromuscular physiology of Grillotia erinaceus metacestodes in vitro. Parasitology 93, 121–32.CrossRefGoogle Scholar
Ward, S. M., McKerr, G. & Allen, J. M. (1986). Structure and ultrastructure of muscle systems within Grillotia erinaceus metacestodes. Parasitology 93, 587–97.CrossRefGoogle ScholarPubMed
Webb, R. A. (1986). The uptake and metabolism of L-glutamate by tissue slices of the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 85C, 151–62.Google ScholarPubMed
Webb, R. A. & Eklove, H. (1989). Demonstration of intense glutamate-like immunoreactivity in the longitudinal nerve cords of the cestode Hymenolepis diminuta. Parasitology Research 78, 545–8.CrossRefGoogle Scholar
Wheal, H. V. & Kerkut, G. A. (1974). The effect of diethyl ester L-glutamate on evoked excitatory junction potentials at the curstacean neuromuscular junction. Brain Research 82, 338–40.CrossRefGoogle ScholarPubMed