Published online by Cambridge University Press: 13 December 2004
In this study, we describe the molecular analysis of zinc-metalloproteases from the abomasal nematode Ostertagia ostertagi which were exclusively recognized by local antibodies of immune cattle. Full-length or partial coding sequences of 4 different zinc-metalloprotease cDNAs of Ostertagia (met-1, -2, -3 and -4) were amplified using gene-specific primers using the 3′- and 5′-Rapid Amplification of cDNA Ends (RACE) technique. Sequence analysis identified the cDNAs as encoding zinc-metalloproteases, which showed between 62% and 70% homology to a metalloprotease 1 precursor of Ancylostoma caninum. The full-length cDNA of met-1 consists of an open reading frame (ORF) of 586 amino acids which contains 5 potential N-glycosylation sites and a predicted zinc-binding domain (HEBXHXBGFXHEXXRXDRD). The complete coding sequence of met-3 contains an ORF of 508 aa and the same conserved zinc-binding domain. These domains are signature sequences of the astacin family of the superfamily of metzincin metalloproteases. The presence of a threonine amino acid after the third histidine in MET-1 and MET-3, however, may place them in a new family or subfamily. Real-time PCR analysis of L3, exsheathed L3, L4 and adult cDNA identified transcription of the 4 metalloproteases in different life-stages. The protein MET-1 was expressed in insect cells using the baculovirus expression system but the immunization of calves with this molecule did not lead to protection against challenge infection.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.