Skip to main content Accessibility help
×
Home

Article contents

Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis

Published online by Cambridge University Press:  21 January 2009

N. FERRARI
Affiliation:
Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria-Università degli Studi di Milano, Via Celoria, 10-20133Milano, Italy Centro di Ecologia Alpina, Fondazione Edmund Mach, 38040Viote del Monte Bondone Trento, Italy
I. M. CATTADORI
Affiliation:
Division of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, GlasgowG61 1QH, UK Center for Infectious Disease Dynamics, Department of Biology, the Pennsylvania State University, University Park, PA 16802, USA
A. RIZZOLI
Affiliation:
Centro di Ecologia Alpina, Fondazione Edmund Mach, 38040Viote del Monte Bondone Trento, Italy
P. J. HUDSON
Affiliation:
Center for Infectious Disease Dynamics, Department of Biology, the Pennsylvania State University, University Park, PA 16802, USA
Corresponding
E-mail address:

Summary

Free-living animals are usually inhabited by a community of parasitic species that can interact with each other and alter both host susceptibility and parasite transmission. In this study we tested the prediction that an increase in the gastrointestinal nematode Heligmosomoides polygyrus would increase the infestation of the tick Ixodes ricinus, in free-living yellow-necked mice, Apodemus flavicollis. An extensive cross-sectional trapping survey identified a negative relationship between H. polygyrus and I. ricinus counter to the prediction. An experimental reduction of the nematode infection through anthelmintic treatment resulted in an increase in tick infestation, suggesting that this negative association was one of cause and effect. Host characteristics (breeding condition and age) and habitat variables also contributed to affect tick infestation. While these results were counter to the prediction, they still support the hypothesis that interactions between parasite species can shape parasite community dynamics in natural systems. Laboratory models may act differently from natural populations and the mechanism generating the negative association is discussed.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Alghali, S. T. O., Hagan, P. and Robinson, M. (1985). Hymenolepis reflli (Cestoda) and Nematospiroides dubius (Nematoda): interspecific interactions in mice. Experimental Parasitology 60, 369370.CrossRefGoogle Scholar
Apanius, V. (1991). Blood parasitism, immunity and reproduction in American kestrel (Falco sparverius L.). Ph.D. thesis. PenState University, Philadelphia, PA, USA.Google Scholar
Bansemir, A. D. and Sukhdeo, M. V. K. (1994). The food resource of adult Heligmosomoides polygyrus in the small intestine. Journal of Parasitology 80, 2428.CrossRefGoogle ScholarPubMed
Behnke, J. M. (2008). Structure in parasite component communities in wild rodents; predictability, stability, associations and interactions … or pure randomness? Parasitology 135, 751766.CrossRefGoogle ScholarPubMed
Behnke, J. M. and Ali, N. M. H. (1984). Survival to patency of low level infections with Trichuris muris in mice concurrently infected with Nematospiroides dubius. Annals of Tropical Medicine and Parasitology 78, 509517.CrossRefGoogle ScholarPubMed
Behnke, J. M., Bajer, A., Sinski, E. and Wakelin, D. (2001). Interactions involving intestinal nematodes of rodents: experimental and field studies. Parasitology 122 (Suppl.), S39S49.CrossRefGoogle ScholarPubMed
Behnke, J. M., Gilbert, F. S., Abu-Madi, M. A. and Lewis, J. W. (2005). Do the helminth parasites of wood mice interact? Journal of Animal Ecology 74, 982993.CrossRefGoogle Scholar
Behnke, J. M., Lewis, J. W., Mohd Zain, S. N. and Gilbert, F. S. (1999). Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on prevalence and abundance of infections. Journal of Helminthology 73, 3144.Google ScholarPubMed
Behnke, J. M., Lowe, A., Clifford, S. and Wakelin, D. (2003). Cellular and serological responses in resistant and susceptible mice exposed to repeated infection with Heligmosomoides polygyrus bakeri. Parasite Immunology 25, 333340.CrossRefGoogle ScholarPubMed
Behnke, J. M., Wahid, F. N., Grencis, R. K., Else, K. J., Bensmith, A. W. and Goyal, P. K. (1993). Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius) downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunology 15, 415421.CrossRefGoogle ScholarPubMed
Behnke, J. M., Wakelin, D. and Wilson, M. M. (1978). Trichinella spiralis delayed rejection in mice concurrently infected with Nematospiroides dubious. Experimental Parasitology 46, 121130.CrossRefGoogle Scholar
Bradley, J. E. and Jackson, J. A. (2008). Measuring immune system variation to help understand host-pathogen community dynamics. Parasitology, 135, 807823.CrossRefGoogle ScholarPubMed
Brailsford, T. J. and Behnke, J. M. (1992). The dynamics of trickle infections with Heligmosomoides polygyrus in syngeneic strains of mice. International Journal for Parasitology 22, 351359.CrossRefGoogle Scholar
Bruna, C. D. and Xenia, B. (1976). Nippostrongylus brasiliensis in mice: reduction of worm burden and prolonged infection induced by the presence of Nematospiroides dubius. Journal of Parasitology 62, 490491.CrossRefGoogle ScholarPubMed
Cable, J., Harris, P. D., Lewis, J. W. and Behnke, J. M. (2006). Molecular evidence that Heligmosomoides polygyrus from laboratory mice and wood mice are separate species. Parasitology 133, 111122.CrossRefGoogle ScholarPubMed
Carpi, G., Cagnacci, F., Neteler, M. and Rizzoli, A. (2008). Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiology and Infection 136, 14161424.CrossRefGoogle Scholar
Cattadori, I. M., Albert, R. and Boag, B. (2007). Variation in host susceptibility and infectiousness generated by co-infection: the myxoma- Trichostrongylus retortaeformis case in wild rabbits. Journal of the Royal Society Interface 4, 831840.CrossRefGoogle ScholarPubMed
Cattadori, I. M., Boag, B. and Hudson, P. J. (2008). Parasite co-infection and interaction as drivers of host heterogeneity. International Journal for Parasitology 38, 371380.CrossRefGoogle ScholarPubMed
Chemini, C., Rizzoli, A., Merler, S., Furlanello, C. and Genchi, C. (1997). Ixodes ricinus (Acari: Ixodidae) infestation on roe deer (Capreolus capreolus) in Trentino, Italian Alps. Parassitologia 39, 5963.Google ScholarPubMed
Christensen, N. Ø., Nansen, P., Fagbemi, B. O. and Monrad, J. (1987). Heterologous and antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts. Parasitology Research 73, 387410.CrossRefGoogle ScholarPubMed
Colwell, D. A. and Wescott, R. B. (1973). Prolongation of egg production of Nippostrongylus brasiliensis in mice concurrently infected with Nematospiroides dubius. Journal of Parasitology 59, 216.CrossRefGoogle ScholarPubMed
Courtney, C. H. and Forrester, D. J. (1973). Interspecific interactions between Hymenolepis microstoma (Cestoda) and Heligmosomoides polygyrus (Nematoda) in mice. Journal of Parasitology 59, 480483.CrossRefGoogle ScholarPubMed
Cox, F. E. G. (2001). Concomitant infections, parasites and immune responses. Parasitology 122 (Suppl.), S23S38.CrossRefGoogle ScholarPubMed
Crawley, M. J. (2002). Statistical Computing. Wiley & Sons. Ltd., Chichester.Google Scholar
Curry, A. J., Else, K. J., Jones, F., Bancroft, A., Grencis, R. K. and Dunne, D. W. (1995). Evidence that cytokine-mediated immune interactions induced by Schistosoma mansoni alter disease outcome in mice concurrently infected with Trichuris muris. Journal of Experimental Medicine 181, 769774.CrossRefGoogle ScholarPubMed
Dizij, A. and Kurtenbach, K. (1995). Clethrionomys glareolus, but not Apodemus flavicollis, acquire resistance to Ixodes ricinus L., the main european vector of Borrelia burgdorferi. Parasite Immunology 17, 177183.CrossRefGoogle Scholar
Edwards, M. J., Buchatska, O., Ashton, M., Montoya, M., Bickle, Q. D. and Borrow, P. (2005) Reciprocal immunomodulation in a Schistosome and Hepatotropic virus coinfection model. The Journal of Immunology. 175, 62756285.CrossRefGoogle Scholar
Euzeby, J. (1982). Diagnostic expérimental des helminthoses animales. Livre 2 diagnostic direct post mortem, diagnostic indirect. Edition: Information Techniques des Services Veterinaires, Ministère de l'Agricolture, Paris, France.Google Scholar
Faulkner, H., Turner, J., Behnke, J., Kamgno, J., Rowlinson, M. C., Bradley, J. E. and Boussinesq, M. (2005). Associations between filarial and gastrointestinal nematodes. Royal Society of Tropical Medicine and Hygiene. Transactions 99, 301312.CrossRefGoogle ScholarPubMed
Fenton, A., Lamb, T. and Graham, A. L. (2008) Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks. Parasitology 135, 841853.CrossRefGoogle ScholarPubMed
Ferrari, N. (2005). Macroparasite transmission and dynamics in Apodemus flavicollis. Ph.D. thesis. University of Stirling, UK.Google Scholar
Ferrari, N., Cattadori, I. M., Nespereira, J., Rizzoli, A. and Hudson, P. J. (2004). The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecology Letters 7, 8894.CrossRefGoogle Scholar
Graham, A. L., Cattadori, I. M., Lloyd-Smith, J. O., Ferrari, M. J. and Bjørnstad, O. N. (2007). Transmission consequences of coinfection: cytokines writ large? Trends in Parasitology 23, 284291.CrossRefGoogle ScholarPubMed
Graham, A. L. (2008). Ecological rules governing helminth-microparasite co-infection. Proceedings of the National Academy of Sciences, USA 105, 566570.CrossRefGoogle Scholar
Gregory, R. D., Keymer, A. E. and Clarke, J. R. (1990). Genetics, sex, and exposure: the ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 59, 363378.CrossRefGoogle Scholar
Gregory, R. D., Montgomery, S. S. J. and Montgomery, W. I. (1992). Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 61, 749757.CrossRefGoogle Scholar
Guègan, J. F., Morand, S. and Poulin, R. (2005). Are there general laws in parasite community ecology? The emegence of spatial parasitology and epidemiology. In Parasitism & Ecosystems (ed. Thomas, F., Renaud, F. and Guégan, J. F.), pp. 2242. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Gurnell, J. and Flowerdew, J. R. (1990). Live Trapping Small Mammals. A Practical Guide. Mammal Society, London, UK.Google Scholar
Hartgers, F. C. and Yazdanbakhsh, M. (2006). Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunology 28, 497506.CrossRefGoogle ScholarPubMed
Haukisalmi, V. and Henttonen, H. (1993 a). Coexistence in helminths of the bank vole Clethrionomys glareolus. I. Pattern of co-occurence. Journal of Animal Ecology 62, 221229.CrossRefGoogle Scholar
Haukisalmi, V. and Henttonen, H. (1993 b). Coexistence in helminths of the bank vole Clethrionomys glareolus. II. Intestinal distribution and interspecific interaction. Journal of Animal Ecology 62, 230238.CrossRefGoogle Scholar
Henttonen, H., Oksanen, T., Jortikka, A. and Haukisalmi, V. (1987). How much do weasels shape microtine cycles in the northern Fennoscandian taiga? Oikos 50, 353365.CrossRefGoogle Scholar
Hernandez, A. D. and Sukhdeo, M. K. (1995). Host grooming and the transmission strategy of Heligmosomoides polygyrus. Journal of Parasitology 81, 865869.CrossRefGoogle ScholarPubMed
Hochberg, M. E. and Holt, R. D. (1990). The coexistence of competing parasites. I. The role of cross-species infection. The American Naturalist 136, 517541.CrossRefGoogle Scholar
Jenkins, D. C. (1975). The influence of Nematospiroides dubius on subsequent Nippostrongylus brasiliensis infection in mice. Parasitology 71, 349355.CrossRefGoogle ScholarPubMed
Jenkins, S. N. and Behnke, J. M. (1997). Impairment of primary expulsion of Trichuris muris in mice concurrently infected with Nematospiroides dubius. Parasitology 75, 7178.CrossRefGoogle Scholar
Kamal, S. M. and El Sayed Khalifa, K. (2006). Immune modulation by helminthic infections: worms and viral infections. Parasite Immunology 28, 483496.CrossRefGoogle ScholarPubMed
Keymer, A. E. (1985). Experimental epidemiology: Nematospiroides dubius and laboratory mouse. In Ecology and Genetics of Host-Parasite Interactions (ed. Rollinson, D. and Anderson, R. M.), pp. 5575. Academic Press, London, UK.Google Scholar
Keymer, A. E. and Hiorns, R. W. (1986). Heligmosomoides polygyrus (Nematoda): the dynamics of primary and repeated infection in outbread mice. Proceedings of the Royal Society of London, B 229, 4767.CrossRefGoogle Scholar
Labuda, M., Kozuch, O., Zuffova, E., Eleckova, E., Hails, R. S. and Nuttall, P. A. (1997). Tick-borne encephalitis virus transmission between ticks co-feeding on specific immune natural rodent hosts. Virology 235, 138143.CrossRefGoogle Scholar
Lello, J., Boag, B., Fenton, A., Stevenson, I. R. and Hudson, P. J. (2004). Competition and mutualism among the gut helminths of a mammalian host. Nature, London 428, 840844.CrossRefGoogle ScholarPubMed
Lello, J. and Hussell, T. (2008). Functional group/guild modelling of inter-specific pathogen interactions: A potential tool for predicting the consequences of co-infection. Parasitology 135, 825839.CrossRefGoogle ScholarPubMed
Locatelli, R. and Paolucci, P. (1998). The structure of small mammals communities in some alpine habitats. Hystrix 10, 4148.Google Scholar
Lotz, J. M. and Font, W. F. (1994). The role of positive and negative interspecific associations in the organization of communities of intestinal helminths of bats. Parasitology 103, 127138.CrossRefGoogle Scholar
Maizels, R. M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M. and Allen, J. E. (2004). Helminth parasites- master of regulation. Immunological Reviews 1, 89116.CrossRefGoogle Scholar
Myllymäki, A., Paasikallio, A., Pankakoski, E. and Kanervo, V. (1971). Removal experiments on small quadrats as a means of rapid assessment of the abundance of small mammals. Annales Zoologici Fennici. 8, 177185.Google Scholar
Monroy, F. G. and Enriquez, F. G. (1992). Heligmosomoides polygyrus: A model for chronic gastrointestinal helminthiasis. Parasitology Today 8, 4954.CrossRefGoogle ScholarPubMed
Morris, P. (1972). A review of mammalian age determination methods. Mammal Review 2, 69104.CrossRefGoogle Scholar
Osfeld, R. S., Miller, M. C. and Schnurr, J. (1993). Ear tagging increases tick (Ixodes dammini) infestation rates of white-footed mice (Peromyscus leucopus). Journal of Mammalogy 74, 651655.CrossRefGoogle Scholar
Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. and Hudson, P. J. (2003). Empirical evidence for key hosts in persistence of tick-borne disease. International Journal for Parasitology 33, 909917.CrossRefGoogle ScholarPubMed
Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. and Hudson, P. J. (2006). Localized deer absence leads to tick amplification. Ecology 87, 19811986.CrossRefGoogle ScholarPubMed
Petney, T. N. and Andrew, R. N. (1998). Multiparasite communities in animals and humans: frequencies, structures and pathogenic significance. International Journal for Parasitology 28, 377393.CrossRefGoogle Scholar
Poulin, R. (2001). Interactions between species and the structure of helminth communities. Parasitology 122 (Suppl.), S3S11.CrossRefGoogle ScholarPubMed
Quinnell, R. J. (1992). The population dynamics of Heligmosomoides polygyrus in an enclosure population of wood mice. Journal of Animal Ecology 61, 669679.CrossRefGoogle Scholar
Randolph, S. E. (1997). Changing spatial relationship in a population of Apodemus sylvaticus with the onset of breeding. Journal of Animal Ecology. 46, 653676.CrossRefGoogle Scholar
Randolph, S. E. (1998). Ticks are not Insects: consequences of contrasting vector biology for transmission potential. Parasitology Today 14, 186192.CrossRefGoogle Scholar
Randolph, S. E. (2000). Ticks and tick-borne disease systems in space and from space. Advances in Parasitology 47, 217243.CrossRefGoogle ScholarPubMed
Randolph, S. E. and Storey, K. (1999). Impact of microclimate tick-rodent host interaction (Acari: Ixodidae): implications for parasite transmission. Journal of Medical Entomology 36, 741748.CrossRefGoogle Scholar
Rizzoli, A., Merler, S., Furlanello, C. and Genchi, C. (2002). Geopgraphical information systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps. Journal of Medical Entomology 39, 485492.CrossRefGoogle Scholar
Rizzoli, A., Rosà, R., Mantelli, B., Pecchioli, E., Hauffe, H., Tagliapietra, V., Beninati, T., Neteler, M, and Genchi, C. (2004). Ixodes ricinus, transmitted diseases and reservoir. Parassitologia 46, 119122.Google Scholar
Rohde, K. (1994). Niche restriction in parasites: proximate and ultimate causes. Parasitology 109, (Suppl.), S69S84.CrossRefGoogle ScholarPubMed
Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. and Rizzoli, A. (2007). Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne and Zoonotic Diseases 7, 285295.CrossRefGoogle ScholarPubMed
Rosso, F., Manfredi, M. T., Ferrari, N., Scalet, G. and Rizzoli, A. (2002). Nematode infections in Apodemus spp. and Clethrionomys glareolus (Shreber, 1780) from Trentino (Italian Alps). Parassitologia 44, 163.Google Scholar
Schalk, G. and Forbes, M. R. (1997) Male biases in parasitism of mammals: effects of study type, host age and parasite taxon. Oikos 78, 6774.CrossRefGoogle Scholar
Slater, A. F. and Keymer, A. E. (1986). Epidemiology of Heligmosomoides polygyrus in mice: experiments on natural transmission. Parasitology 93, 177187.CrossRefGoogle ScholarPubMed
Sonenshine, D. E. (1992). Biology of Ticks. Volume 1. Oxford University Press Inc., New York, USA.Google Scholar
Sousa, W. P. (1992). Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasite. Ecological Monographs 63, 103128.CrossRefGoogle Scholar
Sousa, W. P. (1994). Patterns and processes in communities of helminth parasites. Trends in Ecology & Evolution 9, 5257.CrossRefGoogle Scholar
Stradiotto, A. (2008). Spatial behaviour of the yellow-necked mouse (Apodemus flavicollis, Melchior 1834) at contrasting population density and resource availability. Ph.D. thesis. Università degli Studi di Parma, Italy. http://hdl.handle.net/1889/944Google Scholar
Telfer, S., Birtles, R., Bennett, M., Lambin, X., Paterson, S. and Begon, M. (2008). Parasite interactions in natural populations: insights from longitudinal data. Parasitology 135, 767781.CrossRefGoogle ScholarPubMed
Telford, G., Wheeler, D. J., Appleby, P., Bowen, J. G. and Pritchard, D. I. (1998). Heligmosomoides polygyrus immunomodulatory factor (IMF), targets T-lymphocytes. Parasite Immunology 20, 601611.CrossRefGoogle Scholar
Wahid, F. M. and Behnke, J. M. (1996). Genetic control of acquired resistance to Heligmosomoides polygyrus: overcoming genetically determined weak responder status by strategic immunization with ivermectin-abbreviated infections. Journal of Helminthology 70, 159168.CrossRefGoogle ScholarPubMed
Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglayen, G., Randolph, S. E., Read, A. F. and Skorping, A. (2002). Heterogeneities in macroparasite infections: patterns and processes. In The Ecology of Wildlife Disease (ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P.), pp. 644. Oxford University Press, Oxford, UK.Google Scholar
Woolhouse, M. E. (1998). Patterns in parasite epidemiology: the peak shift. Parasitology Today 14, 428434.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 62 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-rm8z7 Total loading time: 0.456 Render date: 2021-01-21T09:26:48.779Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *