Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T05:30:33.580Z Has data issue: false hasContentIssue false

DNA-binding activity in the excretory–secretory products of Trichinella pseudospiralis (Nematoda: Trichinelloidea)

Published online by Cambridge University Press:  28 November 2001

C. H. MAK
Affiliation:
Department of Zoology, The University of Hong Kong, Hong Kong, China
R. C. KO
Affiliation:
Department of Zoology, The University of Hong Kong, Hong Kong, China

Abstract

A novel DNA-binding peptide of Mr∼30 kDa was documented for the first time in the excretory–secretory (E–S) products of the infective-stage larvae of Trichinella pseudospiralis. Larvae recovered from muscles of infected mice were maintained for 48 h in DMEM medium. E–S products of worms extracted from the medium were analysed for DNA-binding activity by the electrophoretic mobility shift assay (EMSA). Multiple DNA-protein complexes were detected. A comparison of the Mr of proteins in the complexes indicated that they could bind to the target DNA as a dimer, tetramer or multiples of tetramers. Site selection and competition analysis showed that the binding has a low specificity. A (G/C-rich)-gap-(G/T-rich)-DNA sequence pattern was extracted from a pool of degenerate PCR fragments binding to the E–S products. Results of immunoprecipitation and electrophoretic mobility supershift assay confirmed the authenticity of the DNA-binding protein as an E–S product.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BADING, H. (1988). Determination of the molecular weight of DNA-bound protein(s) responsible for gel electrophoretic mobility shift of linear DNA fragments exemplified with purified viral myb protein. Nucleic Acids Research 16, 52415248.CrossRefGoogle Scholar
BEWLEY, C. A., GRONENBORN, A. M. & CLORE, G. M. (1998). Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annual Review of Biophysics and Biomolecular Structure 27, 105131.CrossRefGoogle Scholar
BUTTINELLI, M., PANETTA, G., RHODES, D. & TRAVERS, A. (1999). The role of histone H1 in chromatin condensation and transcriptional repression. Genetica 106, 117124.CrossRefGoogle Scholar
DESPOMMIER, D. (1975). Adaptive changes in muscle fibers infected with Trichinella spiralis. American Journal of Pathology 78, 477496.Google Scholar
DESPOMMIER, D., GOLD, A. M., BUCK, S. W., CAPO, V. & SILBERSTEIN, D. (1990). Trichinella spiralis: secreted antigen of the infective L1 larva localizes to the cytoplasm and nucleoplasm of infected host cells. Experimental Parasitology 71, 2738.CrossRefGoogle Scholar
GAKHAR, S. K., SINGH, S. & SHANDILYA, H. (2000). DNA-binding proteins of the malaria vector Anopheles stephensi: purification and characterization of an endonuclease. Archives of Insect Biochemistry and Physiology 44, 4046.3.0.CO;2-G>CrossRefGoogle Scholar
HAEHLING, E., NIEDERKORN, J. Y. & STEWART, G. L. (1995). Trichinella spiralis and Trichinella pseudospiralis induce collagen synthesis by host fibroblasts in vitro and in vivo. International Journal for Parasitology 25, 13931400.CrossRefGoogle Scholar
HELLAND, D. E., WELLES, J. L., CAPUTO, A. & HASELTINE, W. A. (1991). Transcellular transactivation by the human immunodeficiency virus type I tat protein. Journal of Virology 65, 45474549.Google Scholar
JACKSON, R. W., ATHANASSOPOULOS, E., TSIAMIS, G., MANSFIELD, J. W., SESMA, A., ARNOLD, D. L., GIBBON, M. J., MURILLO, J., TAYLOR, J. D. & VIVIAN, A. (1999). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proceedings of the National Academy of Sciences, USA 96, 1087510880.CrossRefGoogle Scholar
JASMER, D. P., YAO, S., VASSILATIS, D., DESPOMMIER, D. & NEARY, S. M. (1994). Failure to detect Trichinella spiralis p43 in isolated host nuclei and in irradiated larvae of infected muscle cells which express the infected cell phenotype. Molecular and Biochemical Parasitology 67, 225234.CrossRefGoogle Scholar
KIM, J. G., ARMSTRONG, R. C., BERNDT, J. A., KIM, N. W. & HUDSON, L. D. (1998). A secreted DNA-binding protein that is translated through an internal ribosome entry site (IRES) and distributed in a discrete pattern in the central nervous system. Molecular and Cellular Neurosciences 12, 119140.CrossRefGoogle Scholar
KO, R. C., FAN, L., LEE, D. L. & COMPTON, H. (1994). Changes in host muscles induced by excretory/secretory products of larval Trichinella spiralis and Trichinella pseudospiralis. Parasitology 108, 195205.CrossRefGoogle Scholar
KO, R. C. & MAK, C. H. (1999). Trichinellosis as a model of new frontier research on parasitic diseases. International Medical Research Journal 3, 2131.Google Scholar
KRUGER, W. & HERSKOWITZ, I. (1991). A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Molecular and Cellular Biology 11, 41354146.CrossRefGoogle Scholar
LEE, D. L., KO, R. C., YI, X. Y. & YEUNG, M. H. F. (1991). Trichinella spiralis: antigenic epitopes from the stichocytes detected in the hypertrophic nuclei and cytoplasm of the parasitized muscle fibre (nurse cell) of the host. Parasitology 102, 117123.CrossRefGoogle Scholar
LEE, D. L. & SHIVERS, R. R. (1987). A freeze-fracture study of muscle fibres infected with Trichinella spiralis. Tissue and Cell 19, 665671.CrossRefGoogle Scholar
LEUNG, R. K. M. (1995). Purification and biological properties of excretory/secretory antigens from Trichinella spiralis. M. Phil. thesis, Department of Zoology, The University of Hong Kong, Hong Kong.Google Scholar
LEUNG, R. K. M. & KO, R. C. (1997). In vitro effects of Trichinella spiralis on muscle cells. Journal of Helminthology 71, 113118.CrossRefGoogle Scholar
LI, C. K. F., CHUNG, Y. Y. Y. & KO, R. C. (1999). The distribution of excretory/secretory antigens during the muscle phase of Trichinella spiralis and T. pseudospiralis infections. Parasitology Research 85, 993998.CrossRefGoogle Scholar
MAK, C. H., CHUNG, Y. Y. Y. & KO, R. C. (2000). Single-stranded endonuclease activity in the excretory–secretory products of Trichinella spiralis and Trichinella pseudospiralis. Parasitology 120, 527533.CrossRefGoogle Scholar
MAK, C. H. & KO, R. C. (1999). Characterization of endonuclease activity from excretory/secretory products of a parasitic nematode, Trichinella spiralis. European Journal of Biochemistry 260, 477481.CrossRefGoogle Scholar
MARTIN, A. M., HORTON, N. C., LUSETTI, S., REICH, N. O. & PERONA, J. J. (1999). Divalent metal dependence of site-specific DNA binding by EcoRV endonuclease. Biochemistry 38, 84308439.CrossRefGoogle Scholar
MARTINEZ, A. & KOLTER, R. (1997). Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. Journal of Bacteriology 179, 51885194.CrossRefGoogle Scholar
MATSUMOTO, S., YUKITAKE, H., FURUGEN, M., MATSUO, T., MINETA, T. & YAMADA, T. (1999). Identification of a novel DNA-binding protein from Mycobacterium bovis Bacillus Calmette-Guerin. Microbiology and Immunology 43, 10271036.CrossRefGoogle Scholar
MIURA, K., TITANI, K., KUROSAWA, Y. & KANAI, Y. (1992). Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochemical and Biophysical Research Communications 187, 375380.CrossRefGoogle Scholar
PROCHIANTZ, A. & THEODORE, L. (1995). Nuclear/growth factors. Bioessays 17, 3944.CrossRefGoogle Scholar
SCHNEIDER, T. D. (1996). Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods in Enzymology 274, 445455.CrossRefGoogle Scholar
SERRANO, M., SALAS, M. & HERMOSO, J. M. (1993). Multimeric complexes formed by DNA-binding proteins of low sequence specificity. Trends in Biochemical Sciences 18, 202206.CrossRefGoogle Scholar
SWAN, D. G., PHILLIPS, K., TAIT, A. & SHIELS, B. R. (1999). Evidence for localisation of a Theileria parasite AT hook DNA-binding protein to the nucleus of immortalised bovine host cells. Molecular and Biochemical Parasitology 101, 117129.CrossRefGoogle Scholar
VASSILATIS, D. K., DESPOMMIER, D., MISEK, D. E., POLVERE, R. I., GOLD, A. M. & VAN DER PLOEG, L. H. T. (1992). Analysis of a 43-kDa glycoprotein from the intracellular parasitic nematode Trichinella spiralis. Journal of Biological Chemistry 267, 1845918465.Google Scholar
YANG, B., ZHU, W., JOHNSON, L. B. & WHITE, F. F. (2000). The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proceedings of the National Academy of Sciences, USA 97, 98079812.Google Scholar