Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T00:59:33.412Z Has data issue: false hasContentIssue false

Characterization of the fetuin-binding fraction of Neospora caninum tachyzoites and its potential involvement in host-parasite interactions

Published online by Cambridge University Press:  12 February 2007

N. VONLAUFEN
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
A. NAGULESWARAN
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
C. GIANINAZZI
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
A. HEMPHILL*
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
*
*Corresponding author: Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland. Tel: +41 31 631 2384. Fax: +41 31 631 2477. E-mail: andrew.hemphill@ipa.unibe.ch

Summary

Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of ∼65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barber, J. S., Holmdahl, O. J., Owen, M. R., Guy, F., Uggla, A. and Trees, A. J. (1995). Characterization of the first European isolate of Neospora caninum (Dubey, Carpenter, Speer, Topper and Uggla). Parasitology 111, 563568.CrossRefGoogle ScholarPubMed
Binder, E. M. and Kim, K. (2004). Location, location, location: trafficking and function of secreted proteases of Toxoplasma and Plasmodium. Traffic 5, 914924.CrossRefGoogle ScholarPubMed
Björkman, C. and Hemphill, A. (1998). Characterization of Neopsora caninum iscom antigens using monoclonal antibodies. Parasite Immunology 20, 7380.CrossRefGoogle Scholar
Black, M. W. and Boothroyd, J. C. (2000). Lytic cycle of Toxoplasma gondii. Microbiology and Molecular Biology Reviews 64, 607623.CrossRefGoogle ScholarPubMed
Brittingham, A., Chen, G., McGwire, B. S., Chang, K. P. and Mosser, D. M. (1999). Interaction of Leishmania gp63 with cellular receptors for fibronectin. Infection and Immunity 67, 44774484.CrossRefGoogle ScholarPubMed
Buscaglia, C. A., Coppens, I., Hol, W. G. and Nussenzweig, V. (2003). Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Molecular Biology of the Cell 14, 49474957.CrossRefGoogle ScholarPubMed
Carruthers, V. B. (1999). Armed and dangerous: Toxoplasma gondii uses an arsenal of secreotry proteins to infect host cells. Parasitology International 48, 110.Google Scholar
Carruthers, V. B. and Blackman, M. J. (2005). A new release on life: emerging concepts in proteolysis and parasite invasion. Molecular Microbiology 55, 16171630.CrossRefGoogle ScholarPubMed
Carruthers, V. B., Hakansson, S., Giddings, O. K. and sibley, L. D. (2000 a). Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infection and Immunity 68, 40054011.CrossRefGoogle ScholarPubMed
Carruthers, V. B., Sherman, G. D. and Sibley, L. D. (2000 b). The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two different parasite-derived proteases. Journal of Biological Chemistry 275, 1434614353.CrossRefGoogle Scholar
Conseil, V., Soete, M. and Dubremetz, J. F. (1999). Serine protease inhibitors block invasion of host cell by Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 43, 13581361.CrossRefGoogle ScholarPubMed
Cuevas, I. C., Cazzulo, J. J. and Sanchez, D. O. (2003). gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity 71, 57395749.CrossRefGoogle Scholar
Dobrowolsky, J. M., Carruthers, V. B. and Sibley, L. D. (1996). Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Molecular Microbiology 26, 163173.CrossRefGoogle Scholar
Dubey, J. P., Barr, B. C., Barta, J. R., Bjerkas, I., Björkman, C., Blagburn, B. L., Bowman, D. D., Buxton, D., Ellis, J. T., Gottstein, B., Hemphill, A., Hill, D. E., Howe, D. K., Jenkins, M. C., Kobayashi, Y., Koudela, B., Marsh, A. E., Mattsson, J. G., McAllister, M. M., Modry, D., Omata, Y., Sibley, L. D., Speer, C. A., Trees, A. J., Uggla, A., Upton, S. J., Williams, D. J. and Lindsay, D. S. (2002). Redescription of Neospora caninum and its differentiation from related coccidia. International Journal for Parasitology 32, 929946.CrossRefGoogle ScholarPubMed
Dubey, J. P. and Lindsay, D. S. (1996). A review of Neospora caninum and neosporosis. Veterinary Parasitology 67, 159.CrossRefGoogle ScholarPubMed
Furtado, G. C., Cao, Y. and Joiner, K. A. (1992 a). Laminin on Toxoplasma gondii mediates parasite binding to the beta 1 integrin receptor alpha 6 beta 1 on human foreskin fibroblasts and Chinese hamesster ovary cells. Infection and Immunity 60, 49254931.CrossRefGoogle Scholar
Furtado, G. C., Slowik, M., Kleinman, H. K. and Joiner, K. A. (1992 b). Laminin enhances binding of Toxoplasma gondii to JJ774 murine macrophage cells. Infection and Immunity 60, 23372342.CrossRefGoogle ScholarPubMed
Gross, U., Bormuth, H., Gaissmaier, C., Dittrich, C., Krenn, V., Bohne, W. and Ferguson, D. J. (1995). Monoclonal rat antibodies directed against Toxoplasma gondii suitable for studying tachyzoite-bradyzoite interconversion in vivo. Clinical and Diagnostic Laboratory Immunology 2, 542548.CrossRefGoogle ScholarPubMed
Gross, U., Hambach, C., Windeck, T. and Heesemann, J. (1993). Toxoplasma gondii: uptake of fetuin and identification of a 14 kDa fetuin-binding protein. Parasitology Research 79, 191194.CrossRefGoogle Scholar
Hemphill, A. (1996). Subcellular localization and functional characterisation of Nc-p43, a major Neospora caninum tachyzoite surface protein. Infection and Immunity 64, 42794287.CrossRefGoogle ScholarPubMed
Hemphill, A. (1999). The host-parasite relationship in neosporosis. Advances in Parasitology 43, 48105.Google ScholarPubMed
Hemphill, A., Gottstein, B. and Kaufmann, H. (1996). Adhesion and invasion of bovine endothelial cells by Neospora caninum tachyzoites. Parasitology 112, 183197.CrossRefGoogle Scholar
Hemphill, A., Vonlaufen, N., Naguleswaran, A., Guetg, N., Srinivasan, S. and Alaeddine, F. (2004). Tissue culture and explant approaches to study and visualise Neospora caninum and its interactions with the host cell. Microscopy and Microanalysis 10, 119.CrossRefGoogle ScholarPubMed
Hemphill, A., Vonalufen, N. and Naguleswaran, A. (2006). Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 133, 261278.CrossRefGoogle ScholarPubMed
Howe, D. K. and Sibley, L. D. (1999). Comparison of the major antigens of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology 29, 14891496.CrossRefGoogle ScholarPubMed
Jewett, T. J. and Sibley, L. D. (2003). Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molecular Cell 11, 885894.CrossRefGoogle ScholarPubMed
Johnson, W. V. and Heath, E. C. (1986). Structural features of bovine fetuin revealed from analysis of the primary translation product: anomalous behavior on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is due largely to peptide and not solely to carbohydrate. Archives in Biochemistry and Biophysics 251, 732737.CrossRefGoogle Scholar
Joiner, K. A. and Roos, D. (2002). Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. Journal of Cell Biology 157, 557563.CrossRefGoogle ScholarPubMed
Keller, N., Riesen, M., Naguleswaran, A., Vonlaufen, N., Stettler, R., Leepin, A., Wastling, J. M. and Hemphill, A. (2004). Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC) that exhibits unique lactose-binding properties. Infection and Immunity 72, 47914800.CrossRefGoogle Scholar
Kelm, S. and Schauer, R. (1997). Sialic acids in molecular and cellular interactions. International Reviews in Cytology 175, 137240.CrossRefGoogle ScholarPubMed
Kitjaroentham, A., Suthiphongchai, T. and Wilairat, P. (2005). Effect of metalloprotease inhibitors on invasion of red blood cell by Plasmodium falciparum. Acta Tropica 97, 59.CrossRefGoogle ScholarPubMed
Louie, K. and Conrad, P. A. (1999). Characterisation of a cDNA encoding a subtilisin-like serine protease (NC-p65) of Neospora caninum. Molecular and Biochemical Parasitology 103, 211223.CrossRefGoogle ScholarPubMed
Louie, K., Nordhausen, R., Robinson, T. W., Barr, B. C. and Conrad, P. A. (2002). Characterisation of Neospora caninum protease, NcSUB1 (NC-P65), with rabbit anti-N54. Journal of Parasitology 88, 11131119.CrossRefGoogle ScholarPubMed
Lovett, J. L., Howe, D. K. and Sibley, L. D. (2000). Molecular characterization of a thrombospondin-related anonymous protein homologue in Neospora caninum. Molecular and Biochemical Parasitology 107, 3343.CrossRefGoogle ScholarPubMed
Mauel, J. (1996). Intracellular survival of protozoan parasites with special reference to Leishmania spp., Toxoplasma gondii and Trypanosoma cruzi. Advances in Parasitology 38, 151.CrossRefGoogle ScholarPubMed
Mercier, C., Adjogble, K. D., Daubener, W. and Delauw, M. F. (2005). Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? International Journal for Parasitology 35, 829849.CrossRefGoogle ScholarPubMed
Miller, S. A., Binder, E. M., Blackman, M. J., Carruthers, V. B. and Kim, K. (2001). A conserved subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii. Journal of Biological Chemistry 276, 4534145348.CrossRefGoogle ScholarPubMed
Monteiro, V. G., Soares, C. P. and de Souza, W. (1998). Host cell surface sialic acid residues are involved in the process of penetration of Toxoplasma gondii into mammalian cells. FEMS Microbiological Letters 164, 323327.CrossRefGoogle ScholarPubMed
Müller, N., Vonlaufen, N., Gianinazzi, C., Leib, S. and Hemphill, A. (2002). Application of real-time fluorescent PCR for quantitative assessment of Neospora caninum infections in organotypic slice cultures of rat central nervous system tissue. Journal of Clinical Microbiology 40, 252255.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Cannas, A., Keller, N., Vonlaufen, N., Schares, G., Conraths, F. J., Bjorkman, C. and Hemphill, A. (2001). Neospora caninum microneme protein NcMIC3: secretion, subcellular localization, and functional involvement in host cell interaction. Infection and Immunity 69, 64836494.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Cannas, A., Keller, N., Vonlaufen, N., Björkman, C. and Hemphill, A. (2002). Vero cell surface proteoglycan interaction with the microneme protein NcMIC3 mediates adhesion of Neospora caninum tachyzoites to host cells unlike that in Toxoplasma gondii. International Journal for Parasitology 32, 695704.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Müller, N. and Hemphill, A. (2003). Neospora caniunum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Experimental Parasitology 104, 149158.CrossRefGoogle ScholarPubMed
Naguleswaran, A., Alaeddine, F., Guionaud, C., Vonlaufen, N., Sonda, S., Jenoe, P., Mevissen, M. and Hemphill, A. (2005). Neospora caninum protein disulfide isomerase is involved in tachyzoite-host cell interaction. International Journal for Parasitology 35, 14591472.CrossRefGoogle ScholarPubMed
Nok, A. J. and Rivera, W. (2003). Characterisation of sialidase from Entamoaeba hystolitica and possible pathogenic role in amebiasis. Parasitology Research 89, 302307.CrossRefGoogle ScholarPubMed
Ochieng, J., Warfield, P. and Green, B. (1995). Interactions of gelatinases with soluble and immobilized fetuin and asialofetuin. Archives in Biochemistry and Biophysics 322, 250255.CrossRefGoogle ScholarPubMed
Sonda, S., Fuchs, N., Gottstein, B. and Hemphill, A. (2000). Molecular characterisation of a novel microneme antigen in Neospora caninum. Molecular and Biochemical Parasitology 108, 3951.CrossRefGoogle ScholarPubMed
Terkelsen, O. B., Jahnen-Dechent, W., Nielsen, H., Moos, T., Fink, E., Nawratil, P., Muller-Esterl, W. and Mollgard, K. (1998). Rat fetuin: distribution of protein and mRBA in embryonic and neonatal tissues. Anatomy and Embryology 197, 125133.CrossRefGoogle Scholar
Tomley, F. M. and Soldati, D. (2001). Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends in Parasitology 17, 8188.CrossRefGoogle ScholarPubMed
Vimr, E. and Lichtensteiger, C. (2002). To sialylate, or not to sialylate: that is the question. Trends in Microbiology 10, 254257.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Guetg, N., Naguleswaran, A., Muller, N., Bjorkman, C., Schares, G., von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in Vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583.CrossRefGoogle ScholarPubMed
Wessel, D. and Fluegge, U. I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry 138, 141143.CrossRefGoogle ScholarPubMed