Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-31T09:19:14.119Z Has data issue: false hasContentIssue false

Changes in the somatic musculature of the 4th-stage larvae of Ascaris suum Goeze, 1782 (Nematoda: Ascaridoidea) developing in swine

Published online by Cambridge University Press:  06 April 2009

R. T. O'Grady
Affiliation:
Institute of Parasitology, McGill University, Macdonald College Campus, Ste. Anne de Bellevue, P.Q. Canada H9X 1C0

Summary

Fourth-stage larvae of Ascaris suum, recovered from piglets at 11–22 days post-infection (p.i.), were examined by light microscopy for changes in the somatic musculature. During this time the estimated total number of muscle cells in the body increases from approximately 600 to 21 000 cells. This non-eutelic development appears to occur by division of platymyarian muscle cells into coelomyarian cells, thereby increasing the number of muscle cells/quadrant from 5 to 85. The incompleteness of these divisions results in sarcoplasmic connections among muscle cells, and between muscle cells and nerve chords. At 11 days p.i., immediately after the 3rd moult, the variation in muscle cell length in a quadrant, with the longest cells being at the lateral chords, has been established. The average muscle cell length at this point is 0·101 mm, the longest is 0·164 mm. These values have increased to 0·365 mm and 1·122 mm, respectively, by 22 days p.i. At 18 days p.i. those cells in the posterior section of the larva are still the shortest in the body.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alicata, J. E. (1935). Early developmental stages of nematodes occurring in swine. Technical Bulletin No. 489, United States Department of Agriculture.Google Scholar
Araujo, P. (1972). Observaçoes pertinentes às primeiras ecdises de larvas de Ascaris lumbricoides, A. suum e Toxocara canis. Revista do Instituto de Medicina Tropical de Sao Paulo 14, 8390.Google Scholar
Auber-Thomay, M. (1964). Structure et innervation des cellules musculaires de nématodes. Journal de Microscopie 3, 105–13.Google Scholar
Balinsky, B. I. (1975). An Introduction to Embryology. 4th Edn. Philadelphia: W. B. Saunders.Google Scholar
Bradley, C. (1959). The movement of Ascaris lumbricoides. Ph.D. thesis, University of Bristol, England.Google Scholar
Bruce, R. G. (1970). Trichinella spiralis: fine structure of body wall with special reference to formation and moulting of cuticle. Experimental Parasitology 28, 499511.CrossRefGoogle ScholarPubMed
Cappe de Baillon, P. (1911). Étude sur les fibres musculaires d'Ascaris. I. Fibres pariétales. Cellule 27, 165211.Google Scholar
Chitwood, B. G. & Chitwood, M. B. (1934). Somatic musculature in nematodes. Proceedings of the Helminthological Society of Washington 1, 910.Google Scholar
Cobb, J. L. S. (1967). Innervation of the ampulla of the tube foot in the starfish Astropecten irregularis. Proceedings of the Royal Society, B 168, 91–9.Google Scholar
Costello, L. C. (1961). A simplified method of isolating Ascaris eggs. Journal of Parasitology 47, 24.CrossRefGoogle Scholar
Crofton, H. D. (1966). Nematodes. London: Hutchinson University Library.Google Scholar
De Bell, J. T. (1965). A long look at neuromuscular junctions in nematodes. Quarterly Review of Biology 40, 233–51.CrossRefGoogle Scholar
De Bell, J. T., Del Castillo, J. & Sánchez, V. (1963). Electrophysiology of the somatic muscle cells of Ascaris lumbricoides. Journal of Cellular and Comparative Physiology 62, 159–78.Google Scholar
Douvres, F. W., Tromba, F. G. & Malakatis, G. (1969). Morphogenesis and migration of Ascaris suum larvae developing to fourth stage in swine. Journal of Parasitology 55, 689712.Google Scholar
Flood, P. R. (1966). A peculiar mode of muscular innervation in amphioxus. Journal of Comparative Neurology 126, 181217.CrossRefGoogle ScholarPubMed
Flood, P. R. (1973). Ultrastructural and cytochemical studies on the muscle innervation in Appendicularia, Tunicata. Journal de Microscopie 18, 317–26.Google Scholar
Goldschmidt, R. (1908). Das Nervensystem von Ascaris lumbricoides und Megalocephala. Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen. I. Zeitschrift für wissenschaftliche Zoologie 90, 73136.Google Scholar
Hamada, G. S. & Wertheim, G. (1978). Mastophorus muris (Nematoda: Spirurina): ultrastructure of somatic muscle cell development. International Journal for Parasitology 8, 405–14.CrossRefGoogle Scholar
Hennig, W. (1966). Phylogenetic Systematics. Urbana: University of Illinois Press.Google Scholar
Hinz, E. (1963). Elektronenmikroskopische Untersuchungen an Parascaris equorum (Integument, Isolations-gewebe, Musculature und Nerven). Protoplasma 56, 202–41.CrossRefGoogle Scholar
Hope, W. D. (1969). Fine structure of the somatic muscles of the free-living marine nematode Deontostoma californicum Steiner and Albin, 1933 (Leptosomatidae). Proceedings of the Helminthological Society of Washington 36, 1029.Google Scholar
Huxley, J. S. (1932). Problems of Relative Growth, London: Methuen.Google Scholar
Hyman, L. H. (1951). The Invertebrates. III. Acanthocephala, Aschelminthes, and Entoprocta. New York: McGraw-Hill.Google Scholar
Jarman, M. (1976). Neuromuscular physiology of nematodes. In The Organization of Nematodes (ed. Croll, N. A.), pp. 293312. New York: Academic Press.Google Scholar
Johnson, C. D. & Stretton, A. O. W. (1981). Neural control of locomotion in Ascaris: anatomy, electrophysiology, and biochemistry. In Nematodes as Biological Models, vol. 1, (ed. Zuckerman, B. M.), pp. 159195. New York: Academic Press.Google Scholar
Johnson, P. W., Van Gundy, S. D. & Thomson, W. W. (1970). Cuticle formation in Hemicycliophora arenaria, Aphelenchus avenae, and Hirschmaniella gracilis. Journal of Nematology 2, 5979.Google Scholar
Jørgensen, R. J., Nansen, P., Nielsen, K., Eriksen, L. & Andersen, S. (1975). Experimental Ascaris suum infection in the pig. Population kinetics following low and high levels of primary infection in piglets. Veterinary Parasitology 1, 151–7.CrossRefGoogle Scholar
Lee, D. L. & Atkinson, H. J. (1976). Physiology of Nematodes. 2nd Edn. London: MacMillan Press.Google Scholar
Looss, A. (1905). The anatomy and life history of Agchylostoma duodenale Dubini. Records of the Egyptian Government School of Medicine 3, 1158.Google Scholar
Martini, E. (1903). Über Furchung und Gastrulation bei Cucullanus elegans. Zeitschrift für wissenschaftliche Zoologie 74, 510–66.Google Scholar
Martini, E. (1906). Über Subcuticula und Seitenfelder einiger Nematoden. I. Zeitschrift für wissenschaftliche Zoologie 81, 699766.Google Scholar
Martini, E. (1907). Über Konstanz histologischer Elemente bei erwachsenen Nematoden als Folge der determinierten Entwicklung. Sitzungsberichte der naturforschenden Gesellschaft, Rostock. 61, 23–7.Google Scholar
Martini, E. (1908). Die Konstanz histologischer Elemente bei Nematoden nach Abschluss der Entwicklungsperiode. Verhandlungen der anatomischen Gesellschaft 32, 132–4.Google Scholar
Martini, E. (1909). Uber Subcuticula und Seitenfelder einiger Nematoden. IV, V. Zoologischer Anzeiger 98, 535624.Google Scholar
Martini, E. (1916). Die Anatomie der Oxyuris curvula. Zeitschrift für wissenschaftliche Zoologie 116, 137534.Google Scholar
Martini, E. (1923). Die Zellkonstanz und ihre Beziehungen zu anderen zoologischen Vorwurfen. Zeitschrift für Anatomie und Entwicklungsgeschichte 70, 179259.Google Scholar
Maung, M. (1978). The occurrence of the second moult of Ascaris lumbricoides and Ascaris suum. International Journal for Parasitology 8, 371–8.CrossRefGoogle ScholarPubMed
Mill, P. J. & Knapp, M. F. (1970). Neuromuscular junctions in the body wall muscles of the earthworm, Lumbricus terrestris Linnaeus. Journal of Cell Science 7, 263–71.Google Scholar
Mosgovoi, A. A. (1953). [Ascaridata of animals and man.] Academy of Science, U.S.S.R. 2, 107–17.Google Scholar
Needham, J. (1942). Biochemistry and Morphogenesis. Cambridge: Cambridge University Press.Google Scholar
O'Grady, R. T. (1981). Growth and development of the fourth-stage larvae of Ascaris suum Goeze, 1782. M.Sc. thesis, McGill University, Montréal, Canada.Google Scholar
O'Grady, R. T. (1983). Cuticular changes and structural dynamics in the fourth-stage larvae and adults of Ascaris suum Goeze, 1782 (Nematoda: Ascaridoidea) developing in swine. Canadian Journal of Zoology 61, 12931303.Google Scholar
Pai, S. (1928). Die Phasen des Lebenscyclus de Anguillula aceti Ehrenberg und ihre experimentell-morphologische Beeinflussung. Zeitschrift für wissenschaftliche Zoologie 131, 293344.Google Scholar
Pilitt, P. A., Lichtenfels, J. R., Tromba, F. G. & Madden, P. A. (1981). Differentiation of late fourth and early fifth stages of Ascaris suum Goeze, 1782 (Nematoda: Ascaridoidea) in swine. Proceedings of the Helminthological Society of Washington 48, 17.Google Scholar
Ransom, B. H. & Foster, W. D. (1920). Observations on the life history of Ascaris lumbricoides. United States Department of Agriculture Bulletin No. 817.Google Scholar
Reger, J. F. (1965). Fine structure of neuromuscular junctions of body wall muscle cells of Ascaris lumbricoides (var. suum). Zeitschrift für Zellforschung 67, 196210.CrossRefGoogle ScholarPubMed
Richardson, K. C., Jarett, L. & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology 35, 313–23.CrossRefGoogle ScholarPubMed
Rosenbluth, J. (1963). Fine structure of body muscle cells and neuromuscular junctions in Ascaris lumbricoides. Journal of Cell Biology 19, 82A.Google Scholar
Rosenbluth, J. (1965 a). Ultrastructural organization of obliquely striated muscle fibres of Ascaris lumbricoides. Journal of Cell Biology 25, 495515.Google Scholar
Rosenbluth, J. (1965 b). Ultrastructure of somatic cells in Ascaris lumbricoides. II. Intermuscular junctions, neuromuscular junctions, and glycogen stores. Journal of Cell Biology 26, 579–91.Google Scholar
Rosenbluth, J. (1967). Obliquely striated muscle III. Contraction mechanism of Ascaris body muscle. Journal of Cell Biology 34, 1533.CrossRefGoogle Scholar
Rubin, H. & Trelease, R. N. (1975). Ultrastructure of developing Ascaris larvae undergoing lipid to carbohydrate interconversion. Journal of Parasitology 61, 577–88.Google Scholar
Schacher, J. F. (1957). A contribution to the life history and larval morphology of Toxocara canis. Journal of Parasitology 43, 599612.Google Scholar
Schneider, A. (1866). Monographie der Nematoden. Berlin: Reimer. Reprinted (1968). Farnborough, Hants, England: Gregg International.Google Scholar
Stretton, A. O. W. (1976). Anatomy and development of the somatic musculature of the nematode Ascaris. Journal of Experimental Biology 64, 773–88.Google Scholar
Sulston, J. E. & Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Developmental Biology 56, 110–56.CrossRefGoogle ScholarPubMed
Tannenbaum, A. S. & Rosenbluth, J. (1972). Myoneural junctions in larval ascidian tail. Experientia 28, 1210–12.CrossRefGoogle ScholarPubMed
Thust, R. (1968). Untersuchungen über die Morphogenese des Integumentes des Ascaris lumbricoides. Zeitschrift für wissenschaftliche Zoologie A178, 139.Google Scholar
Wiley, E. O. (1981). Phylogenetics: the Theory and Practice of Phylogenetic Systematics. New York: Wiley-Interscience, John Wiley and Sons.Google Scholar
Wright, K. A. (1965). The histology of the oesophageal region of Xiphinema index Thorne and Allen, 1950, as seen with the electron microscope. Canadian Journal of Zoology 43, 689700.Google Scholar
Wright, K. A. (1966). Cytoplasmic bridges and muscle systems in some polymyarian nematodes. Canadian Journal of Zoology 44, 329–40.CrossRefGoogle Scholar
Wright, K. A. & Jones, N. O. (1965). Some techniques for the orientation and embedding of nematodes for electron microscopy. Nematologica 11, 125–30.Google Scholar
Yoshida, S. (1919). On the development of Ascaris lumbricoides Linnaeus. Journal of Parasitology 5, 105–15.Google Scholar