Skip to main content Accessibility help
×
Home

Article contents

Asexual blood stages of malaria modulate gametocyte infectivity to the mosquito vector – possible implications for control strategies

Published online by Cambridge University Press:  06 April 2009


R. E. Sinden
Affiliation:
Department of Biology, Imperial College, London SW7 2BB, UK

Abstract

In the rodent malarial parasite Plasmodium berghei sexual parasites are produced in a single major wave with maximal numbers between day 7 and day 16. Irrespective of their time of appearance during infection these sexual parasites are equally fertile in vitro. In contrast, in vivo infectivity to the mosquito is maximal at day 3–5 when gametocyte numbers are only 9% of the peak levels seen between days 7 and 16. Up to 96% of natural potential infectivity of gametocytes for the mosquito is therefore suppressed. The suppression is humoral, reversible and correlates with the appearance of an effective host response to the initial rapid increase in asexual parasitaemia. These data are consistent with published evidence which indicates that a reduction in parasitaemia may cause an increase in infectivity of gametocytes to the mosquito vector. Therefore the impact of strategies aiming to control asexual parasites is re-examined. Inefficient strategies might be predicted to increase and not suppress malaria transmission.


Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below.

References

Bastien, P., Landau, I. & Baccam, D. (1987). Inhibition of infectivity of plasmodium gametocytes by serum of the infected host setting up an experimental model. Annales de Parasitologie Humaine et Comparée 62, 195208.CrossRefGoogle Scholar
Boyd, M. F. (1942). On the varying infectiousness of different patients infected with vivax malaria. American Journal of Tropical Medicine 22, 7381.CrossRefGoogle Scholar
Burgess, R. W. & Bray, R. S. (1961). The effect of a single dose of primaquine on the gametocytes, gametogony and sporogony of Laverania falciparum. Bulletin of the World Health Organization 24, 451–6.Google ScholarPubMed
Butcher, G. A. & Clark, I. A. (1990). The inhibition of Plasmodium falciparum growth in vitro by sera from mice infected with malaria or treated with TNF. Parasitology 101, 321–6.CrossRefGoogle ScholarPubMed
Cantrell, W. & Jordan, H. B. (1946). Changes in the infectiousness of gametocytes during the course of Plasmodium gallinaceum infections. Journal of Infectious Diseases 78, 153–9.CrossRefGoogle ScholarPubMed
Carter, R. & Graves, P. M. (1988). Gametocytes. In Malaria: Principles and Practice of Malariology (ed. Wernsdorfer, W. H. & McGregor, I.), pp. 253306. Edinburgh: Churchill Livingstone.Google Scholar
Carter, R., Graves, P. M., Quakyi, I. & Good, M. F. (1989). Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission-blocking antibodies. Journal of Experimental Medicine 135, 147.Google Scholar
Carter, R. & Gwadz, R. W. (1980). Infectiousness and gamete immunization in malaria. In Malaria, Vol. 3, Immunology and Immunization (ed. Kreier, J. P.), pp. 263–98. New York: Academic Press.Google Scholar
Carter, R., Gwadz, R. W. & Mcauliffe, F. M. (1979). Plasmodium gallinaceum: transmission blocking immunity in chickens. I. Comparative immunogenicity of gametocyte and gamete-containing preparations. Experimental Parasitology 47, 185–93.CrossRefGoogle ScholarPubMed
Carter, R., Kumar, N., Quakyi, I., Good, M., Mendis, K., Graves, P. & Miller, L. H. (1988). Immunity to sexual stages of malaria parasites. Progress in Allergy 41, 193214.Google ScholarPubMed
Coatney, G. R., Collins, W. E., Warren, M. C. W. & Contacos, P. G. (1971). The Primate Malarias. Bethesda, Maryland: U.S. Department of Health, Education and Welfare, NIH.Google Scholar
Dearsly, A. L., Sinden, R. E. & Self, I. (1990). Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology 100, 359–68.CrossRefGoogle ScholarPubMed
Dei-Cas, E., Maurois, P., Dutoit, E., Landau, I. & Miltgen, F. (1980). Etudes sur les gamétocytes des plasmodium des mammifères: morphologie et infectivité des gamétocytes de Plasmodium inui. Cahiers O.R.S.T.O.M. série Entomologie Medicale et Parasitologie 18, 111–12.Google Scholar
De Zoysa, A. P. K., Herath, P. R. J., Abhayawardana, T. A., Padmalal, U. K. G. K. & Mendis, K. N. (1988). Modulation of human malaria transmission by antigamete transmission blocking immunity. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 548–53.CrossRefGoogle Scholar
Eyles, D. E. (1951). Studies on Plasmodium gallinaceum. 1. Characteristics of the infection in the mosquito Aedes aegypti. American Journal of Tropical Medicine and Hygiene 54, 101–12.Google ScholarPubMed
Eyles, D. E. (1952 a). Studies on Plasmodium gallinaceum. III. Factors associated with the malaria infection in the vertebrate host which influence the degree of infection in the mosquito. American Journal of Tropical Medicine and Hygiene 55, 386–91.Google ScholarPubMed
Eyles, D. E. (1952 b). Studies on Plasmodium gallinaceum. II. Factors in the blood of the vertebrate host influencing mosquito infection. American Journal of Hygiene 55, 276–90.Google ScholarPubMed
Eyles, D. E. (1952 c). Studies on Plasmodium gallinaceum. IV. A comparison of the susceptibility of Aedes aegypti, Anopheles quadrimaculatus and Anopheles freeborni. American Journal of Hygiene 56, 71–7.Google ScholarPubMed
Graves, P. M., Carter, R., Burkot, T. R., Quakyi, I. A. & Kumar, N. (1988). Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunology 10, 209–18.CrossRefGoogle ScholarPubMed
Grotendorst, C. A. & Carter, R. (1987). Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. II. Changes in sensitivity to complement-like factors during zygote development. Journal of Parasitology 73, 980–4.CrossRefGoogle ScholarPubMed
Grotendorst, C. A., Carter, R., Rosenberg, R. & Koontz, L. (1986). Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. I. Resistance of zygotes to the alternative pathway of complement. Journal of Immunology 136, 4270–4.Google ScholarPubMed
Gwadz, R. W. & Green, I. (1978). Malaria immunization in rhesus monkeys. A vaccine effective against both the sexual and asexual stages of Plasmodium knowlesi. Journal of Experimental Medicine 148, 1311–23.CrossRefGoogle ScholarPubMed
Hamidi, A. N. (1977). The effect of chloroquine on the infectivity of rodent malaria parasites to Anopheles stephensi. Iranian Journal of Public Health 6, 611.Google Scholar
Huff, C. G. (1927). Studies on the infectivity of Plasmodia of birds for mosquitoes, with special reference to the problem of immunity in the mosquito. American Journal of Hygiene 7, 706–34.Google Scholar
Huff, C. G., Marchbank, D. F. & Shiroshi, T. (1958). Changes in infectiousness of malarial gametocytes. II. Analysis of possible causative factors. Experimental Parasitology 7, 399417.CrossRefGoogle ScholarPubMed
James, S. P., Nicol, W. D. & Shute, P. G. (1932). Clinical and parasitological observations on induced malaria. Proceedings of the Royal Society of Medicine 29, 879–94.Google Scholar
Janse, C. J., Mons, B., Rouwenhorst, R. J., Van Der Klooster, P. F. J., Overdulve, J. P. & Van Der Kaay, H. J. (1985). In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes. Parasitology 91, 1929.CrossRefGoogle ScholarPubMed
Jeffery, G. M. (1952). Infection of mosquitoes by Plasmodium vivax (Chesson strain) during the early primary parasitaemias. American Journal of Tropical Medicine and Hygiene 1, 612–17.CrossRefGoogle Scholar
Jeffery, G. M. (1958). Infectivity to mosquitoes of Plasmodium vivax following treatment with chloroquine and other antimalarials. American Journal of Tropical Medicine and Hygiene 7, 207–11.CrossRefGoogle ScholarPubMed
Jeffery, G. M. (1960). Infectivity to mosquitoes of Plasmodium vivax and Plasmodium falciparum under various conditions. American Journal of Tropical Medicine and Hygiene 9, 315–20.CrossRefGoogle ScholarPubMed
Jeffery, G. M. & Eyles, D. E. (1955). Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. American Journal of Tropical Medicine and Hygiene 4, 781–9.CrossRefGoogle ScholarPubMed
Kaushik, N. K., Subrahmanyam, D. & Sehgal, S. (1982). Blocking of malarial transmission by a gamete vaccine against Plasmodium berghei NK-65. Indian Journal of Malariology 19, 1319.Google Scholar
Landau, I., Miltgen, F., Boulard, Y., Chabaud, A. G. & Baccam, D. (1979). Etudes sur les gamétocytes des plasmodium du groupe ‘vivax’: morphologie, évolution prise par les Anophèles et infectivité des microgamétocytes de Plasmodium yoelii. Annales de Parasitologie Humaine et Comparée (Paris) 54, 145–61.CrossRefGoogle Scholar
Mendis, K. N., Munesinghe, Y. D., Desilva, Y. N. Y., Keragalla, I. & Carter, R. (1987). Malaria transmission-blocking immunity induced by natural infections of Plasmodium vivax in humans. Infection and Immunity 55, 369–72.Google ScholarPubMed
Mendis, K. N. & Targett, G. A. T. (1981). Immunization to produce a transmission-blocking immunity in Plasmodium yoelii malaria infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 158–9.CrossRefGoogle ScholarPubMed
Miller, L. H. (1988). Effective vaccine for humans. Nature, London 332, 109–10.CrossRefGoogle ScholarPubMed
Muirhead-Thomson, R. C. (1957). The malarial infectivity of an African village population to mosquitoes (Anapheles gambiae). A random xenodiagnostic survey. American Journal of Tropical Medicine and Hygiene 6, 971–9.CrossRefGoogle Scholar
Muirhead-Thomson, R. C. & Mercier, E. C. (1952). Factors in malaria transmission by Anopheles albimanus in Jamaica. Part 1. Annals of Tropical Medicine and Parasitology 46, 103–16.CrossRefGoogle Scholar
Naotunne, T DE S., Karunaweera, N. D., Del Giudice, G., Kularatne, M. U., Grau, G. E., Carter, R. & Mendis, K. N. (1991). Cytokines kill malaria parasites during infection crisis – extracellular complementary factors are essential. Journal of Experimental Medicine. 173, 523–9.CrossRefGoogle ScholarPubMed
Nussenzweig, R. S. & Nussenzweig, V. (1989). Antisporozoite vaccine for malaria: experimental basis and current status. Reviews in Infectious Diseases 11 (Suppl 3), S579S585.CrossRefGoogle ScholarPubMed
Peters, W., Chance, M. L., Lissner, R., Momen, H. & Warhurst, D. C. (1978). The chemotherapy of rodent malaria. XXX. The ‘enigmas’ of the NS line of P. berghei. Annals of Tropical Medicine and Parasitology 72, 2336.CrossRefGoogle Scholar
Petit, G., Camus, D., Dei-Cas, E. & Landau, I. (1982). Inhibition immédiate de l'infectivité des gamétocytes de Plasmodium yoelii nigeriensis par le sérum de rongeurs infectés depuis 5 jours. Annales de Parasitologie Humaine et Comparée 57, 507–8.CrossRefGoogle Scholar
Rosenberg, R., Koontz, L. C., Alston, K. & Friedman, F. K. (1984). Plasmodium gallinaceum: erythrocyte factor essential for zygote infection of Aedes aegypti. Experimental Parasitology 57, 158–64.CrossRefGoogle ScholarPubMed
Sattabongkot, J., Maneechai, N. & Rosenberg, R. (1991). Plasmodium vivax: gametocyte infectivity of naturally infected Thai adults. Parasitology 102, 2731.CrossRefGoogle ScholarPubMed
Shute, P. G. & Maryon, M. (1951). A study of gametocytes in a west African strain of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 44, 421–38.CrossRefGoogle Scholar
Targett, G. A. T. (1989). Status of malaria vaccine research. Journal of the Royal Society of Medicine 82, (Suppl. 17), 52–5.Google ScholarPubMed
Wilkinson, R. N., Colwell, E. J. & Neoypatimanond, S. (1973). Effect of sulphamethoxazole-trimethoprim on the viability of Plasmodium falciparum gametocytes. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 148–9.CrossRefGoogle ScholarPubMed
Winckel, C. W. F. (1952). Gametocytocidal properties of antimalarial drugs. Documenta de Medicina Geographica et Tropica 4, 71–7.Google Scholar
Young, M. D. & Burgess, R. W. (1961). The infectivity to mosquitoes of Plasmodium malariae. The American Journal of Hygiene 73, 182–92.Google ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-xsjvs Total loading time: 8.937 Render date: 2020-12-02T07:30:22.881Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 07:06:18 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Asexual blood stages of malaria modulate gametocyte infectivity to the mosquito vector – possible implications for control strategies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Asexual blood stages of malaria modulate gametocyte infectivity to the mosquito vector – possible implications for control strategies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Asexual blood stages of malaria modulate gametocyte infectivity to the mosquito vector – possible implications for control strategies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *