Skip to main content Accessibility help
×
Home

Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic

  • Xu Dai (a1) and Haijun Song (a1)

Abstract

Cosmopolitanism occurred recurrently during the geologic past, especially after mass extinctions, but the underlying mechanisms remain poorly known. Three theoretical models, not mutually exclusive, can lead to cosmopolitanism: (1) selective extinction in endemic taxa, (2) endemic taxa becoming cosmopolitan after the extinction and (3) an increase in the number of newly originated cosmopolitan taxa after extinction. We analyzed an updated occurrence dataset including 831 middle Permian to Middle Triassic ammonoid genera and used two network methods to distinguish major episodes of ammonoid cosmopolitanism during this time interval. Then, we tested the three proposed models in these case studies. Our results confirm that at least two remarkable cosmopolitanism events occurred after the Permian–Triassic and late Smithian (Early Triassic) extinctions, respectively. Partitioned analyses of survivors and newcomers revealed that the immediate cosmopolitanism event (Griesbachian) after the Permian–Triassic event can be attributed to endemic genera becoming cosmopolitan (model 2) and an increase in the number of newly originated cosmopolitan genera after the extinction (model 3). Late Smithian cosmopolitanism is caused by selective extinction in endemic taxa (model 1) and an increase in the number of newly originated cosmopolitan genera (model 3). We found that the survivors of the Permian–Triassic mass extinction did not show a wider geographic range, suggesting that this mass extinction is nonselective among the biogeographic ranges, while late Smithian survivors exhibit a wide geographic range, indicating selective survivorship among cosmopolitan genera. These successive cosmopolitanism events during severe extinctions are associated with marked environmental upheavals such as rapid climate changes and oceanic anoxic events, suggesting that environmental fluctuations play a significant role in cosmopolitanism.

Copyright

Corresponding author

*Corresponding author.

Footnotes

Hide All

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.0k6djh9xj

Footnotes

References

Hide All
Antell, G. S., Kiessling, W., Aberhan, M., and Saupe, E. E.. 2020. Marine biodiversity and geographic distributions are independent on large scales. Current Biology 30:115121.
Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U.. 2017. Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling. Solid Earth 8:361378.
Benton, M. J. 2018. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Philosophical Transactions of the Royal Society of London A 376:20170076.
Bernardi, M., Petti, F. M., and Benton, M. J.. 2018. Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction. Proceedings of the Royal Society of London B 285:20172331.
Black, B. A., Neely, R. R., Lamarque, J.-F., Elkins-Tanton, L. T., Kiehl, J. T., Shields, C. A., Mills, M. J., and Bardeen, C.. 2018. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience 11:949954.
Bond, D. P., and Wignall, P. B.. 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122:12651279.
Brayard, A., and Bucher, H.. 2008. Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (south China): taxonomy and biochronology. Fossils and Strata 55:1184.
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T.. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography Palaeoclimatology Palaeoecology 239:374395.
Brayard, A., Escarguel, G., and Bucher, H.. 2007. The biogeography of early Triassic ammonoid faunas: clusters, gradients, and networks. Geobios 40:749765.
Brayard, A., Brühwiler, T., Bucher, H., and Jenks, J.. 2009a. Guodunites, a low-palaeolatitude and tran-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52:471481.
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J.. 2009b. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.
Brayard, A., Bylund, K. G., Jenks, J. F., Stephen, D. A., Olivier, N., Escarguel, G., Fara, E., and Vennin, E.. 2013. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss Journal of Palaeontology 132:141219.
Brayard, A., Escarguel, G., Monnet, C., Jenks, J. F., and Bucher, H.. 2015. Biogeography of Triassic ammonoids. Pp. 163187in Klug, C., Kruta, I., Korn, D., Mapes, R. H., and Baets, K. D., eds. Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Netherlands.
Brayard, A., Jenks, J. F., and Bylund, K. G.. 2019. Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios 54:1336.
Brosse, M., Brayard, A., Fara, E., and Neige, P.. 2013. Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. Journal of the Geological Society of London 170:225236.
Brühwiler, T., Brayard, A., Bucher, H., and Guodun, K.. 2008. Griesbachian and Dienerian (Early Triassic) Ammonoid Faunas from northwestern Guangxi and southern Guizhou (south China). Palaeontology 51:11511180.
Brühwiler, T., Bucher, H., Brayard, A., and Goudemand, N.. 2010a. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the northern Indian Margin. Palaeogeography Palaeoclimatology Palaeoecology 297:491501.
Brühwiler, T., Bucher, H., and Goudemand, N.. 2010b. Smithian (Early Triassic) ammonoids from Tulong, south Tibet. Geobios 43:403431.
Brühwiler, T., Bucher, H., Goudemand, N., and Galfetti, T.. 2012a. Smithian (Early Triassic) ammonoid faunas from exotic blocks from Oman: taxonomy and biochronology. Palaeontographica Abteilung A:13107.
Brühwiler, T., Bucher, H., and Krystyn, L.. 2012b. Middle and late Smithian (Early Triassic) ammonoids from Spiti, India. Special Papers in Palaeontology Series 88:115174.
Brühwiler, T., Bucher, H., Ware, D., Hermmann, E., Hochuli, P. A., Roohi, G., Rehman, K., and Yaseen, A.. 2012c. Smithian (Early Triassic) ammonoids from the Salt Range. Special Papers in Palaeontology Series 88:1114.
Burgess, S. D., Bowring, S., and Shen, S.-z.. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences USA 111:33163321.
Burgess, S. D., Muirhead, J. D., and Bowring, S. A.. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications 8:164.
Burman, S. G., Aronson, R. B., and van Woesik, R.. 2012. Biotic homogenization of coral assemblages along the Florida reef tract. Marine Ecology Progress Series 467:8996.
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652655.
Button, D. J., Lloyd, G. T., Ezcurra, M. D., and Butler, R. J.. 2017. Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nature Communications 8:733.
Chen, Y., Jiang, H., Ogg, J. G., Zhang, Y., Gong, Y., and Yan, C.. 2020. Early–Middle Triassic boundary interval: Integrated chemo-bio-magneto-stratigraphy of potential GSSPs for the base of the Anisian Stage in South China. Earth and Planetary Science Letters 530:115863.
Clarkson, M., Kasemann, S., Wood, R., Lenton, T., Daines, S., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S., and Tipper, E.. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229232.
Clarkson, M. O., Wood, R. A., Poulton, S. W., Richoz, S., Newton, R. J., Kasemann, S. A., Bowyer, F., and Krystyn, L.. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications 7:12236.
Dai, X., Song, H., Brayard, A., and Ware, D.. 2019. A new Griesbachian–Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology 93:4871.
Dunhill, A. M., and Wills, M. A.. 2015. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. Nature Communications 6:7980.
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567570.
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weisset, H., and Vigran, J. O.. 2007. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.
Goudemand, N., Orchard, M. J., Bucher, H., and Jenks, J.. 2012. The elusive origin of Chiosella timorensis (Conodont Triassic). Geobios 45:199207.
Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J. A., and Williams, I. S.. 2019. Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian–Spathian biotic crisis. Earth-Science Reviews 195:169178.
Grasby, S. E., Beauchamp, B., Embry, A., and Sanei, H.. 2013. Recurrent Early Triassic ocean anoxia. Geology 41:175178.
Guex, J., Hungerbühler, A., Jenks, J. F., O'Dogherty, L., Atudorei, V., Taylor, D. G., Bucher, H., and Bartolini, A.. 2010. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie de Lausanne 49:181.
Hammer, Ø., Harper, D. A., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.
Harries, P. J., Kauffman, E. G., and Hansen, T. A.. 1996. Models for biotic survival following mass extinction. Pp. 4160in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society Special Publication 102.
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J. F., and Hautmann, M.. 2016. Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Papers in Palaeontology 2:155188.
Jattiot, R., Bucher, H., Brayard, A., Brosse, M., Jenks, J. F., and Bylund, K. G.. 2017. Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontographica Abteilung A 309:189.
Jattiot, R., Brayard, A., Bucher, H., Vennin, E., Caravaca, G., Jenks, J. F., Bylund, K. G. and Escarguel, G.. 2018. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters. Palaeontology 61:881904.
Jattiot, R., Bucher, H., and Brayard, A.. 2020. Smithian (Early Triassic) ammonoid faunas from Timor: taxonomy and biochronology. Palaeontographica Abteilung A 317:1137.
Jenks, J. F., and Brayard, A.. 2018. Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: taxonomy, biostratigraphy and biogeography. New Mexico Museum of Natural History and Science Bulletin 78:1175.
Jenks, J. F., Monnet, C., Balini, M., Brayard, A., and Meier, M.. 2015. Biostratigraphy of Triassic ammonoids. Pp. 329388in Klug, C., Kruta, I., Korn, D., Mapes, R. H., and Baets, K. D., eds. Ammonoid paleobiology: from macroevolution to paleogeography. Springer, Netherlands.
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y.. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195198.
Kiel, S. 2017. Using network analysis to trace the evolution of biogeography through geologic time: a case study. Geology 45:711714.
Kiessling, W., and Aberhan, M.. 2007. Geographical distribution and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.
Kivelä, M., Arnaud-Haond, S., and Saramaki, J.. 2015. EDENetworks: a user-friendly software to build and analyse networks in biogeography, ecology and population genetics. Molecular Ecology Resources 15:117122.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Kocsis, A. T., Reddin, C. J., and Kiessling, W.. 2018. The biogeographical imprint of mass extinctions. Proceedings of the Royal Society of London B 285:20180232.
Korn, D., Hopkins, M. J., and Walton, S. A.. 2013. Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67:27952810.
Korn, D., Ghaderi, A., Leda, L., Schobben, M., and Ashouri, A. R.. 2016. The ammonoids from the Late Permian Paratirolites Limestone of Julfa (east Azerbaijan, Iran). Journal of Systematic Palaeontology 14:841890.
Korn, D., Ghaderi, A., Tabrizi, N. G.. 2019. Early Changhsingian (Late Permian) ammonoids from NW Iran. Neues Jahrbuch Fur Geologie Und Palaontologie-abhandlungen 293:3756.
Leonova, T. B. 2002. Permian ammonoids: classification and phylogeny. Paleontological Journal 36:S1S114.
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., and McGill, B.. 2015. Rapid biotic homogenization of marine fish assemblages. Nature Communications 6:8405.
McGowan, A. J. 2004. Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology 32:665668.
McGowan, A. J. 2005. Ammonoid recovery from the Late Permian mass extinction event. Comptes Rendus Palevol 4:517530.
McKinney, M. L., and Lockwood, J. L.. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14:450453.
Monnet, C., Bucher, H., Brayard, A., and Jenks, J. F.. 2013. Globacrochordiceras gen. nov (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Fossil Record 16:197215.
Muto, S., Takahashi, S., Yamakita, S., Suzuki, N., Suzuki, N., and Aita, Y.. 2018. High sediment input and possible oceanic anoxia in the pelagic Panthalassa during the latest Olenekian and early Anisian: insights from a new deep-sea section in Ogama, Tochigi, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 490:687707.
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H.. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.
Petsios, E., and Bottjer, D. J.. 2016. Quantitative analysis of the ecological dominance of benthic disaster taxa in the aftermath of the end-Permian mass extinction. Paleobiology 42:380393.
Peybernes, C., Chablais, J., Onoue, T., Escarguel, G., and Martini, R.. 2016. Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the Late Triassic: insights from reef limestone of the Sambosan Accretionary Complex, Shikoku, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 457: 3151.
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.
Renne, P. R., Zhang, Z. C., Richards, M. A., Black, M. T., and Basu, A. R.. 1995. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 269:14131416.
Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G., and Hoey, A. S.. 2018. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Global Change Biology 24:31173129.
Rodland, D. L., and Bottjer, D. J.. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95101.
Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., Bruehwiler, T., Brinkmann, W., and Bucher, H.. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6:5760.
Schobben, M., Joachimski, M. M., Korn, D., Leda, L., and Korte, C.. 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research 26:675683.
Scotese, C. R. 2014. PALEOMAP Atlas for ArcGIS (Jurassic and Triassic), Vol. 3, maps 43–48, and PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic), Vol. 4, maps 49–52, in Atlas of Middle & Late Permian and Triassic paleogeographic maps. Mollweide Projection, PALEOMAP Project, Evanston, Ill.
Shen, S., Ramezani, J., Chen, J., Cao, C., Erwin, D. H., Zhang, H., Lei, X., C, S. S. D.. Henderson, M., Zheng, Q., Bowring, S. A., Wang, Y., Li, X., Wang, X., Yuan, D., Zhang, Y., Mu, L., Wang, J., and Wu, Y.. 2018. A sudden end-Permian mass extinction in south China. Geological Society of America Bulletin 131:205223.
Shigeta, Y., Zakharov, Y. D., Maeda, H., and Popov, A. M.. 2009. The Lower Triassic system in the Abrek Bay area, south Primorye, Russia. National Museum of Nature and Science, Tokyo.
Sidor, C. A., Vilhena, D. A., Angielczyk, K. D., Huttenlocker, A. K., Nesbitt, S. J., Peecook, B. R., Steyer, J. S., Smith, R. M. H., and Tsuji, L. A.. 2013. Provincialization of terrestrial faunas following the end-Permian mass extinction. Proceedings of the National Academy of Sciences USA 110:81298133.
Smyshlyaeva, O. P., and Zakharov, Y. D.. 2013. New members of the family flemingitidae (Ammonoidea) from the Lower Triassic of South Primorye. Paleontological Journal 47:247255.
Song, H., Wignall, P. B., Tong, J., Bond, D. P., Song, H., Lai, X., Zhang, K., Wang, H., and Chen, Y.. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353:1221.
Song, H., Wignall, P. B., Tong, J., Song, H., Chen, J., Chu, D., Tian, L., Luo, M., Zong, K., Chen, Y., Lai, X., Zhang, K., and Wang, H.. 2015. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth and Planetary Science Letters 424:140147.
Song, H., Tong, J., Wignall, P. B., Luo, M., Tian, L., Song, H., Huang, Y., and Chu, D.. 2016. Early Triassic disaster and opportunistic foraminifers in south China. Geological Magazine 153:298315.
Song, H., Wignall, P. B., and Dunhill, A. M.. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances 4:eaat5091.
Song, H., Huang, S., Jia, E., Dai, X., Wignall, P. B., Dunhill, A. M.. 2020. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proceedings of the National Academy of Sciences USA 117:1757817583.
Song, H. Y., Du, Y., Algeo, T. J., Tong, J. N., Owens, J. D., Song, H. J., Tian, L., Qiu, H., Zhu, Y., and Lyons, T. W.. 2019. Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-early Triassic). Earth-Science Reviews 195:133146.
Stanley, S. M. 2009. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proceedings of the National Academy of Sciences USA 106:1526415267.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366370.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., and Araujo, M. B.. 2011. Consequences of climate change on the tree of life in Europe. Nature 470:531534
Tong, J., Zuo, J., and Chen, Z. Q.. 2007. Early Triassic carbon isotope excursions from south China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geological Journal 42:371389.
Tozer, E. T. 1981. Triassic Ammonoidea: geographic and stratigraphic distribution. Pp. 397431. in House, M. R., and Senior, J. R., eds. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association, London.
Tozer, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada, Ottawa.
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.
Ware, D., Jenks, J. F., Hautmann, M., and Bucher, H.. 2011. Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss Journal of Geosciences 104:161181.
Ware, D., Bucher, H., Brayard, A., Schneebeli-Hermann, E., and Brühwiler, T.. 2015. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 440:363373.
Ware, D., Bucher, H., Brühwiler, T., and Krystyn, L.. 2018a. Dienerian (Early Triassic) ammonoids from Spiti (Himachal Pradesh, India). Fossil and Strata 63:177241.
Ware, D., Bucher, H., Brühwiler, T., Schneebeli-Hermann, E., Hochuli, P. A., Roohi, G., Rehman, K., and Yaseen, A.. 2018b. Griesbachian and Dienerian (Early Triassic) ammonoids from the Salt Range, Pakistan. Fossil and Strata 63:11175.
Yacobucci, M. M. 2018. Postmortem transport in fossil and modern shelled cephalopods. PeerJ 6:e5909.
Yin, H., and Song, H.. 2013. Mass extinction and Pangea integration during the Paleozoic–Mesozoic transition. Science China-Earth Sciences 56:17911803.
Zhang, F., Romaniello, S. J., Algeo, T. J., Lau, K. V., Clapham, M. E., Richoz, S., Herrmann, A. D., Smith, H., Horacek, M., and Anbar, A. D.. 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances 4:e1602921.
Zhang, L., Orchard, M. J., Brayard, A., Algeo, T. J., Zhao, L., Chen, Z.-Q., and Lyu, Z.. 2019. The Smithian/Spathian boundary (late Early Triassic): a review of ammonoid, conodont, and carbon-isotopic criteria. Earth-Science Reviews 195:736.
Zhao, J., Liang, X., and Zheng, Z.. 1978. Late Permian cephalopods from south China. Palaeontologia Sinica, Series B 12:1–194.

Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic

  • Xu Dai (a1) and Haijun Song (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.